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Abstract

We prove a generalization of the Ahlswede-Cai local-global principle. A new technique to
handle edge-isoperimetric problems is introduced which we call the pull-push method. Our
main result includes all previously published results in this area as special cases with the only
exception of the edge-isoperimetric problem for grids. With this we partially answer a question
of Harper on local-global principles. We also describe a strategy for further generalization of
our results so that the case of grids would be covered, which would completely settle Harper’s
question.

1 Introduction

For a finite simple graph G = (V,E), sets A,B ⊆ V and integer m ≥ 0 denote

IG(A,B) = {{u, v} ∈ E
∣∣ u ∈ A, v ∈ B},

IG(A) = IG(A,A),

IG(m) = max
S⊆V,|S|=m

|IG(S)|,

Θ(A) = {{u, v} ∈ E
∣∣ u ∈ A, v ̸∈ A},

Θ(m) = min
S⊆V,|S|=m

|Θ(m)|.

In the sequel the index G will be omitted whenever the graphs in question are clear from the
context. The following versions of the edge-isoperimetric problem on graphs have been intensively
studied in the literature:

Induced Edges Problem: For a given m ∈ {1, . . . , |V |} find a set A ⊆ V such that |A| = m and
I(|A|) = |I(A)|.

Cut Edges Problem: For a given m ∈ {1, . . . , |V |} find a set A ⊆ V such that |A| = m and
Θ(|A|) = |Θ(A)|.

Many authors have previously realized that these two problems are equivalent for regular graphs,
which follows from the next assertion.

Lemma 1.1. If G = (V,E) is regular of degree d and A ⊆ V then

|Θ(A)|+ 2|I(A)| = d|A|.

A set A ⊆ V is called optimal if IG(|A|) = |IG(A)|. We say that G = (V,E) admits nested
solutions if there exists a chain of optimal subsets A1 ⊂ A2 ⊂ · · · ⊂ A|V |. In this case we call the
graph G isoperimetric.
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A total order on a graph G is a bijection ηG : V → {1, . . . , |V |}. For positive integers k, l with
k < l, and u, v ∈ V , we define

ηG[k, l] = η−1
G ({k, · · · , l}),

ηG[k] = η−1
G ({1, · · · , k}),

u <ηG v iff ηG(u) < ηG(v).

We call ηG[k] initial segment of size k of the order ηG. For an isoperimetric graph G = (V,E) and
its chain of nested solutions ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ A|V | there is a natural total order ηG,

which we call an optimal order on G, defined by η−1
G (i) = ui for {ui} = Ai \Ai−1, i ∈ {1, . . . , |V |}.

Note that an optimal order depends not only on G, but also on the chain of nested solutions which
is not unique, in general.

We study edge-isoperimetric problems on Cartesian products of graphs. For graphs G and H
their Cartesian product is a graph G□H defined as follows:

VG□H = VG × VH

EG□H = {((vG, vH), (uG, uH))
∣∣ vG = uG and (vH , uH) ∈ EH , or vH = uH and (vG, uG) ∈ EG}.

Denote Gd = G□ · · ·□G (d times), where G0 is a simple graph with one vertex.
We define a Lexicographic order of dimension d, Ld on Rd, such that for tuples of real numbers

x = (x1, . . . , xd) and y = (y1, . . . , yd) we say that x <Ld y iff x1 = y1, . . . , xi = yi and xi+1 < yi+1

for some i ∈ {0, 1, . . . , d− 1}.
Suppose that G1, . . . , Gd are isoperimetric graphs with optimal orders η1, . . . , ηd, respectively,

and let G = G1□ · · ·□Gd. The following total order Ld
G on the Cartesian product of graphs, called

Lexicographic order on G of dimension d, plays an important role in various extremal problems.
For v = (v1, . . . , vd) ∈ VG and u = (u1, . . . , ud) ∈ VG, we write v <Ld

G
u iff (η1(v1), . . . , ηd(vd)) <Ld

(η1(u1), . . . , ηd(ud)). The next theorem is one of the earliest results on edge-isoperimetric problems.

Theorem 1.2 (Harper [14], Bernstein [4], Hart [16]). The order Ld
G is optimal for G = Kd

2 .

A similar result was obtained later for the powers of larger cliques and products of some other
graphs, where the lexicographic order was proved to be optimal. At the end of the twentieth century
Ahlswede and Cai established the optimality of the lexicographic order in the most general form,
called by them the local-global principle, from which Theorem 1.2 and many similar results follow.

Theorem 1.3 (Ahlswede-Cai [3]). Let G1, . . . , Gd be isoperimetric graphs and G = G1□ · · ·□Gd.
If the order L2

Gi□Gj
is optimal for all i, j with 1 ≤ i < j ≤ d, then Ld

G is optimal for d ≥ 3.

Remark 1.4. Actually, Theorem 1.3 was originally stated in a more general form for sub-modular
and super-modular functions over finite sets (see [3] and [2]), and the functions IG and ΘG belong
to this category. Although our results can be also generalized for sub-modular and super-modular
functions, we will only be dealing with functions IG and ΘG relevant to the edge-isoperimetric
problems.

Despite many applications of Theorem 1.3, there are graphs for whose Cartesian products the
lexicographic order is not optimal. One of such graphs is a grid, i.e. the Cartesian product of paths,
which was later generalized to the product of arbitrary trees.

Theorem 1.5 (Bollobás-Leader [10]). If G is a path then Gd has nested solutions for the Induced
Edges problem.
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Theorem 1.6 (Ahlswede-Bezrukov [1]). If G1, . . . , Gd are trees then G1□ · · ·□Gd has nested so-
lutions for the Induced Edges problem.

Theorems 1.5 and 1.6 are proved combinatorially by induction on d. In [10] the authors also
solved the Cut Edges problem, but they used calculus for this. The Cut Edges problem does not
have nested solutions for the grid. Ahlswede and Bezrukov generalized Theorem 1.5 and gave a
simpler proof based on a new approach. Later, some other graphs were found for which the optimal
order is different from the Lexicographic one.

Theorem 1.7 (Bezrukov-Das-Elsässer [8]). If G is the Petersen graph then Gd has nested solutions.

Theorem 1.8 (Bezrukov-Das-Elsässer [8]). If G1 is the Petersen graph and G2 = K2 then G
d1
1 □Gd2

2

has nested solutions.

Theorem 1.9 (Carlson [12]). If G is the cycle on 5 vertices then Gd has nested solutions.

The proof technique used in Theorems 1.7, 1.8 and 1.9 is also based on induction on d, where
the base case d = 2 was considered specially. This approach can also be considered as a local-
global principle. The proof of the induction steps involved a large number of cases, subcases and
subsubcases, along with a decent amount of computations, and is based on specific properties of
the considered graphs.

Our result is the most general local-global principle. It is valid for a variety of total orders,
out of which the lexicographic order and the other orders appearing in theorems 1.7, 1.8 and 1.9
are special cases. The proof of our result is purely geometric and involves just a few cases or
computations. We use a new technique that we call the pull-push method. This technique is
somewhat different from the one used to prove the earlier theorems and does not depend on the
structure of the involved graphs. Harper in [15] asked if Theorem 1.3 can be extended to prove
Theorems 1.7 and 1.5. Our main result answers this affirmatively for Theorem 1.7. In the last
section of the paper, we lay out a strategy on how to further generalize the main result to handle
Theorem 1.5 as well.

The edge-isoperimetric problems have a lot of applications, some of which can be found in
[15] and [6]. The applications include the wirelength problem, the bisection width and the edge
congestion problem of graph embedding, modeling the brain, the cutwidth problem and graph par-
titioning. The graphs in Theorem 1.7 are called folded Petersen networks and have been studied
in [20, 22, 21, 18, 13] as a communication-efficient interconnection network topology for multipro-
cessors. The graphs in Theorem 1.8 are called folded Petersen cubes and have been studied in
[13, 19].

The paper has 7 sections. In the next section we introduce the necessary definitions to formulate
the main result. In section 3 we present the geometric structure of the problem. In section 4 we go
over some well-known results on compression which we use in the paper. The main result is proved
in section 5. Section 6 is devoted to some corollaries of our main result and can be considered as
a short survey of results in the area. Concluding remarks and possible directions for generalizing
our results are put in section 7.

2 δ-sequences, partitions and statement of the main result

Let Od be a total order on Rd and let G1, . . . , Gd be isoperimetric graphs with optimal orders
η1, . . . , ηd. Consider G = G1□ · · ·□Gd and define the total order Od

G on G so that v <Od
G
u for

v = (v1, . . . , vd) ∈ VG and u = (u1, . . . , ud) ∈ VG, iff (η1(v1), . . . , ηd(vd)) <Od (η1(u1), . . . , ηd(ud)).
We call Od

G the induced by Od order on G.
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G1

G2

· · ·

Figure 2.1: Geometric interpretation of lexicographic (top) and colexicographic (bottom) orders in
two dimensions

Denote by Sd the symmetric group of degree d, i.e., the set of all permutations on {1, . . . , d}.
For π ∈ Sd we define the domination order Dπ,d of dimension d so that x <Dπ,d y for x =
(x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd iff (xπ(1), . . . , xπ(d)) <Ld (yπ(1), . . . , yπ(d)). Respectively,

for G = G1□ · · ·□Gd we obtain the domination order Dπ,d
G on G induced by Dπ,d. For example,

Did,d = Ld, where id is the identity permutation on {1, . . . , d}. If π(i) = (d − i + 1) then Dπ,d is
the colexicographic order. For d = 2 we have just two domination orders, the lexicographic and
colexicographic ones. A geometric interpretation of these orders is given in Figure 2.1. For d = 3
there are 6 dominations orders including the lexicographic and colexicographic ones. A geometric
interpretation of these orders is given in Figure 2.2.

Corollary 2.1. (of Theorem 1.3) Let G1, . . . , Gd be isoperimetric graphs, G = G1□ · · ·□Gd, and

π ∈ Sd. If for all i, j ∈ {1, . . . , d} with i < j the order L2
Gπ(i)□Gπ(j)

is optimal, then Dπ,d
G is optimal

for d ≥ 3.

Proof. Denote H = Gπ(1)□ · · ·□Gπ(d) and define ψ : G→ H such that

ψ((v1, . . . , vd)) = (vπ(1), . . . , vπ(d)).

It is easily seen that ψ is a graph isomorphism. For x, y ∈ VG one has x <Dπ,d
G

y iff ψ(x) <Ld
H
ψ(y).

Since Ld
H is optimal for H we conclude Dπ,d

G is optimal for G.

For a graph G = (V,E) and integer m ∈ {1, . . . , |V |} denote

δG(m) = IG(m)− IG(m− 1)

with δG(1) = 0. If G is isoperimetric with optimal order OG and v ∈ V denote

∆G(v) = δG(OG(v))

Lemma 2.2 (Bezrukov [7]). If G = (V,E) is isoperimetric then δ(i + 1) − δ(i) ≤ 1 for i =
1, . . . , |V | − 1.
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Figure 2.2: Geometric interpretation of lexicographic (top) and colexicographic (bottom) orders in
three dimensions

Let G = (V,E) be isoperimetric with optimal order OG. For integers a, b ∈ {1, . . . , |V |} with
a < b denote by δG[a, b] = (δ(a), . . . , δ(b)) , a monotonic segment, where

1. For all i ∈ {a, . . . , b− 1} we have δ(i+ 1)− δ(i) = 1.

2. If a > 1 then δ(a)− δ(a− 1) < 1.

3. If b < |V | then δ(b+ 1)− δ(b) < 1.

In other words, a monotonic segment is a longest increasing sequence of δ-values. We say that
OG[a, b] ⊆ V is a monotonic set from a to b. For two monotonic sets OG[a1, b1] and OG[a2, b2],
we write OG[a1, b1] <OG

OG[a2, b2] iff b1 < a2. It is easily seen that V is uniquely partitioned
into monotonic sets, hence, δG - into monotonic segments. We call such a partition the standard
monotonic partition of G, and we denote it by MG = {OG[a1, b1], . . . ,OG[ak, bk]}. Here are a few
examples, where monotonic segments are underlined:

δKn = (0, 1, 2, 3, . . . , n− 1),

δPn = (0, 1, 1, 1, . . . , 1),

δPetersen = (0, 1, 1, 1, 2, 1, 2, 2, 2, 3).

Thus, |MKn | = 1, |MPn | = n − 1, and |MPetersen| = 6. It turns out that MG has interesting
properties.

Theorem 2.3 (Bezrukov-Bulatovic-Kuzmanovski [5]). Let G be isoperimetric and consider its
standard monotonic partition MG = {OG[a1, b1] <OG

· · · <OG
OG[ak, bk]}. For i ∈ {1, . . . , k} one

has

1. The graph (OG[ai, bi], IG(OG[ai, bi])) is a clique, and hence it is isoperimetric with induced
order Oi, such that u <Oi v for u, v ∈ OG[ai, bi] iff u <OG

v.
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2. For all v ∈ OG[ai, bi] we have |I(OG[a1, bi−1], {v})| = δ(ai).

We extend the concept of monotonic partitions to more general partitionsPG = {OG[a1, b1] <OG

· · · <OG
OG[ak, bk]} of V , where OG[ai, bi] are not necessarily monotonic sets. We say that PG is

an isoperimetric partition if

1. The graph (OG[ai, bi], IG(OG[ai, bi])) is isoperimetric with induced order Oi, such that u <OG

v for u, v ∈ OG[ai, bi] iff u <Oi v.

2. For every v ∈ OG[ai, bi] it holds |I(OG[a1, bi−1], {v})| = δ(ai).

For example, for the Petersen graph we can partition the δ-sequence in two parts

δPetersen = (0, 1, 1, 1, 2, 1, 2, 2, 2, 3).

Each of the parts induces a cycle of length 5 studied in [12].

Lemma 2.4. Let G = (V,E) be an isoperimetric graph with an isoperimetric partition PG =
{OG[a1, b1] <OG

· · · <OG
OG[ak, bk]}. Then for the graph Hi = (OG[ai, bi], IG(OG[ai, bi])), i =

1, . . . , k, and x, y ∈ OG[ai, bi] with y <OG
x it holds that

∆G(x)−∆G(y) = ∆Hi(x)−∆Hi(y).

Proof. Indeed, ∆G(x)−∆G(y) = ∆G(ai) + ∆Hi(x)−∆G(ai)−∆Hi(y) = ∆Hi(x)−∆Hi(y).

We call the first and last vertex of O[a, b] ∈ PG the start and end of O[a, b]. Further denote by
TG = {O−1

G (a1), . . . ,O−1
G (ak)} the start set of the partition PG. We say that PG is non-decreasing

if for every i ∈ {1, . . . , k} the sequence δ(OG[ai,bi],IG(OG[ai,bi])) is non-decreasing. We say that PG is
regular if

δ(OG[a1,b1],IG(OG[a1,b1])) = δ(OG[ak,bk],IG(OG[ak,bk]))

Note that for any isoperimetric graph G, the standard monotonic partition MG is an isoperimetric
and non-decreasing partition. However, MG is not always regular, as the next example shows.
Consider the graph G which is the union of two disjoint cliques K5 and K4. Then

δG = (0, 1, 2, 3, 4, 0, 1, 2, 3).

For G = G1□ · · ·□Gd and nonempty subset S = {i1, . . . , ik} ⊆ {1, . . . , d} we define the sub-
product of G of dimension k as GS = Gi1□ · · ·□Gik . Let OG and OGS

be total orders on G and
GS , respectively. We say that OG is consistent with OGS

if x <OG
y for x = (x1, . . . , xd) ∈ VG and

y = (y1, . . . , yd) ∈ VG with xj = yj for j ̸∈ S implies (xi1 , . . . , xik) <OGS
(yi1 , . . . , yik).

Suppose Gi = (Vi, Ei) for i = 1, . . . , d is an isoperimetric graph with an optimal order OGi , and
let PGi be its isoperimetric partition with the start set TGi . Define a block of G to be an element
of

{Z1 × · · · × Zd

∣∣ Z1 ∈ PGi , . . . , Zd ∈ PGd
}

and a start of G to be an element of

{(z1, . . . , zd)
∣∣ z1 ∈ TG1 , . . . , zd ∈ TGd

}.

Note that blocks of G and starts of G are in a bijective correspondence. We say that the partitions
PG1 , . . . ,PGd

compose a domination collection if for each block B = Z1 × · · · × Zd of G one has:
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1. For each nonempty S = {i1 < · · · < ik} ⊆ {1, . . . , d} there is an optimal domination order

DπS ,k
HS

on graph HS = (Zi1 × · · · × Zik , IG(Zi1 × · · · × Zik)).

2. For any nonempty sets S1 = {i1 < · · · < ik1} ⊆ {1, . . . , d} and S2 = {i1 < · · · < ik2} ⊆
{1, . . . , d} with S1 ⊂ S2, the order DπS2

,k2
HS2

is consistent with DπS1
,k1

HS1
.

We can obtain a domination collection by defining domination orders for each block of G. Note
that for any S ⊂ {1, . . . , d} the vertices of HS form a block in the subproduct GS . Also note that
PGi1

, . . . ,PGik
is a domination collection on GS . Hence, each of 2d − 1 subproducts has a start

set, blocks, and domination collection. For brevity, we denote the domination order on a block B
of some k-dimensional subproduct by DB.

Now, we introduce a new total order for which we prove a local-global principle in the next
sections. For nonempty S = {i1 < · · · < ik} ⊆ {1, . . . , d} define the block lexicographic order BLk

GS

of dimension k on GS such that for u, v ∈ VG we have u <BLk
GS

v iff

1. If u and v are in the same block B, then u <DB
v.

2. If u and v are in different blocks, say Bu and Bv, with respective starts zu and zv, then
zu <Lk

G
zv.

We abbreviate BLd
G{1,...,d}

to BLd
G. Just one more definition is needed to state our main result below.

Suppose that for d ≥ 3 and i = 1, . . . , d we have an isoperimetric graph Gi = (Vi, Ei) with optimal
order OGi and isoperimetric partition PGi = {OGi [ai,1, bi,1] <OGi

· · · <OGi
OGi [ai,ni , bi,ni ]}. We

say that PG1 , . . . ,PGd
is a regular domination collection if the following hold:

1. The partition PGi is regular for i = 2, . . . , d− 1.

2. With

B1 = OG2 [a2,1, b2,1]× · · · ×OGd−1
[ad−1,1, bd−1,1],

B2 = OG2 [a2,n2 , b2,n2 ]× · · · ×OGd−1
[ad−1,nd−1

, bd−1,nd−1
].

the domination order on B1 is the same as the domination order on B2. That is, if DB1 is
induced by a permutation π1 and DB2 is induced by a permutation π2, then π1 = π2.

Theorem 2.5. Let G1, . . . , Gd be isoperimetric graphs and let their corresponding isoperimetric
partitions be PG1 , . . . ,PGd

. Denote G = G1□ · · ·□Gd and suppose that the following hold:

1. For i = 1, . . . , d− 1 the partition PGi is non-decreasing.

2. The collection of partitions PG1 , . . . ,PGd
is a regular domination collection.

If for i, j ∈ {1, . . . , d} with i < j the order BL2
Gi□Gj

is optimal, then the order BLd
G is optimal for

d ≥ 3.

3 Geometry of the problem

The objects introduced here play a key role in understanding transformations and proof techniques
used in the paper. Throughout this section we assume that G1, . . . , Gd are isoperimetric graphs
with domination collection PG1 , . . . ,PGd

and start sets TG1 , . . . ,TGd
. Denote G = G1□ · · ·□Gd =
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G3

G2

G1

s1

s5

s3

s7

s2

s6

s4

s8

Figure 3.1: Ordering of blocks of G for d = 3, |PG1 | = |PG2 | = |PG3 | = 2, and TG1 ×TG2 ×TG3 =
{s1, s2, s3, s4, s5, s6, s7, s8} listed in increasing order.

(V,E). We can view G as a d-dimensional rectangular body where the vectors with integer co-
ordinates (see Figure 3.1) correspond to the vertices of G, and the vector coordinates along each
coordinate axis are ordered according to the isoperimetric order on Gi.

For u ∈ V denote by BlockG(u) the d-dimensional block containing u. Since the blocks of G
partition V , for every u ∈ V its containing block is defined uniquely. Denote by StartG(B) the
start vertex of block B and by StartG(u) the start vertex of the block BlockG(u). Figure 3.1 shows
some blocks and their starts.

For i ∈ {1, . . . , d} define the i-th bone and the skeleton of a block B = Z1 × · · · × Zd as

BoneG(B, i) =

i−1∏
j=1

{StartGj (Zj)}

× Zi ×

 d∏
j=i+1

{StartGj (Zj)}


Skeleton(B) =

d⋃
i=1

BoneG(B, i).

Figure 3.2 shows a visualization of the bones and skeleton of a block.
If C = Y1 × · · · × Yd is some block other than B with Yi = Zi, we say that blocks B and C

share the i-th bone in the product decomposition of C and B. Figure 3.3 shows examples of bone
sharing.

For i ∈ {1, . . . , d}, σ ∈ TG1 × · · · × TGi−1 , τ ∈ TGi+1 × · · · × TGd
, and s ∈ TGi we consider the

vertices of the form (σ, s, τ) ∈ V . Then define the stack in direction i at α = (σ, i, τ) as

StackG(α) =
⋃

s∈TGi

Block((σ, s, τ)).

Some stacks are visualized in Figure 3.4. For the left stack one has σ = (s1, s2) where s1 is the
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G3

G2

G1

s s s s

Figure 3.2: Bones and the skeleton of the block with start s.

G3

G2

G1

Figure 3.3: Blocks sharing 1st bone, 2nd bone, and no bone.

fourth start of G1 and s2 is the first start of G2, and there is no τ . For the other stack τ = (s3, s4)
where s3 is the second start of G2 and s4 is the first start of G3, and there is no σ.

The last objects we will need are called slices. For i ∈ {1, . . . , |TG1 |} denote by si the i-th start
of G1. The i-th slice of G is defined as the union of all blocks B whose first coordinate of StartG(B)
is si, and denoted by SliceG(i). In other terms a slice is the union of all blocks that share the 1st
bone. Some slices are shown in Figure 3.5.

For blocks B1 and B2 of G we say that B1 <BLd
G
B2 iff StartG(B1) <BLd

G
StartG(B2). This way

we obtain a total order on the set of blocks of G, which is illustrated in Figure 3.1
Since a stack is a disjoint union of blocks, all the blocks of a stack become totally ordered. For

an example, where blocks are ordered according to the indices of their starts, see the left part of

G3

G2

G1

Figure 3.4: Visualization of stacks of G for d = 3, the left stack is in direction 3, the other one is
in direction 1.
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G3

G2

G1

Figure 3.5: SliceG(1) and SliceG(3).

G3

G2

G1

a1

a2

a3

G3

G2

G1

s1 s2

Figure 3.6: Ordering of blocks in a stack and ordering of stacks in a slice.

Figure 3.6. For stacks StackG(α) and StackG(β) in direction d we write StackG(α) <BLd
G
StackG(β)

iff the first block of StackG(α) is less (in the above defined order) than the first block of StackG(β).
This ordering can be observed in the right part of Figure 3.6.

Finally, we need to define an order on slices. One can view a slice as disjoint union of blocks.
Alternatively, a slice can be viewed as disjoint union of stacks in the d-th direction (see Figure 3.6).
We write SliceG(i) <BLd

G
SliceG(j) iff i < j.

Summing up, VG is partitioned by slices, each slice is partitioned by stacks in the d-th direction,
and each stack is partitioned by blocks. Furthermore, there is a total order of slices, stacks, and
blocks induced by the order BLd

G.

4 Compression

Let G1, . . . , Gd be graphs with some total orders OG1 , . . . ,OGd
on their vertex sets, and let G =

(VG, EG) = G1□ · · ·□Gd. For S = {i1 < · · · < ik} ⊂ {1, . . . , d} denote by OGS
the induced order on

GS = Gi1□ · · ·□Gik . Denote S = {j1 < · · · < jd−k} = {1, . . . , d}\S. For x = (xj1 , . . . , xjd−k
) ∈ VGS

we define the cut or section of GS at x to be the graph GS(x) = (VGS(x), EGS(x)), where

VGS(x) = {(v1, . . . , vd) ∈ VG
∣∣ with vq = xq for q ∈ S},

EGS(x) = IG(VGS(x)).

Note that the graphs GS(x) are isomorphic to GS for all x. This isomorphism provides a total
order OGS(x) on GS(x) induced by the order OGS

on GS .
For a set A ⊆ VG we define the compression CompG,OGS

(A) of G with respect to OGS
as the

operation that replaces the vertices in each A ∩GS with an initial segment (of order OGS(x) inside

10



the cut GS(x)) of the same size. More formally we use the definition from [15],

CompG,OGS
(A) =

⋃
x∈VG{1,...,d}\S

OGS(x)[|A ∩ VGS(x)|].

The following lemmas 4.1 - 4.3 have been discovered and used by many authors, see, e.g. [15],
so we present them without a proof here.

Lemma 4.1. If OGS
is optimal then for any A ⊆ VG it holds:

1. |CompG,OGS
(A)| = |A|.

2. If B ⊆ A then CompG,OGS
(B) ⊆ CompG,OGS

(A).

3. |IG(A)| ≤ |IG(CompG,OGS
(A))|.

The next lemma informally says that if the orders in question are consistent, then after a finite
time of applying the compression one gets a stable set.

Lemma 4.2. Let S0, . . . , Sp−1 ⊂ {1, . . . , d} and S = (S0, . . . , Sp−1). For A ⊆ VG and n ≥ 1 define

CompnG,S(A) =

CompG,OGS0

(A) if n = 1,

CompG,OGSn mod p

(Compn−1
G,S (A)) if n ≥ 2.

If the order OGSq
is consistent with OG for q = 1, . . . , n then the sequence (CompnG,S(A))

∞
n=1 is

eventually constant. In other words, there is n0 such that for all n ≥ n0 one has Compn+1
G,S (A) =

CompnG,S(A).

Denote by CompG,S(A) the resulting stable set in Lemma 4.2. We say that A ⊆ VG is compressed
if for S = ({1}, . . . , {d}) we have CompG,S(A) = A. Furthermore, we say that A is strongly
compressed if CompG,S(A) = A for any proper subset S of {1, . . . , d}. In the sequel we will be
looking for solutions to the edge-isoperimetric problem that are compressed sets.

For optimal orders OG1 , . . . ,OGd
and A ⊆ VG define the weight of A as

ωG(A) =
∑

(i1,...,in)∈A

 n∑
j=1

∆Gj (ij)

 .

Lemma 4.3. If OG1 , . . . ,OGd
are optimal orders and A ⊆ VG is a compressed set then |IG(A)| =

ωG(A).

This lemma immediately implies the following assertion.

Corollary 4.4. Let A ⊆ VG be compressed, T1 ⊆ VG \A, and T2 ⊆ A. If (A∪T1)\T2 is compressed
then

|IG(A)| − |IG((A ∪ T1) \ T2)| = ωG(A)− ωG((A ∪ T1) \ T2) = ωG(T2)− ωG(T1).

We extend compression to the geometric objects introduced in the previous section. Suppose
that A ⊆ VG is compressed and there is a domination collection PG1 , . . . ,PGd

. Let B1, . . . , Bp be
all blocks of G ordered so that Ba <BLd

G
Bb whenever a < b. Denote by r be the largest block

number such that A ∩Br ̸= ∅. We say that A is block compressed if Bi ⊆ A for i < r.
Consider a slice SliceG(q) and let B1, . . . , Bpq be its blocks ordered so that Ba <BLd

G
Bb whenever

a < b. Denote by rq be the largest block number such that A ∩ Brq ̸= ∅. We say that A is slice
compressed if for each q = 1, . . . , |PG1 | and i < rq it holds Bi ⊆ A. Thus, if A is slice compressed
then it is block compressed.

11



5 Proof of the Main result

Let G1, . . . , Gd be isoperimetric graphs with a regular domination collection of non-decreasing
isoperimetric partitions PG1 , . . . ,PGd

. We also assume that the order BL2
Gi□Gj

is optimal for all
i, j ∈ {1, . . . , d} with i < j and let A ⊆ VG be an optimal set.

The theorem is proved by introducing a series of operations that transform the set A into the
initial segment of order BLd

G of the same size without reducing the number of induced edges. First,
we make A slice-compressed (Theorem 5.6), then block-compressed (Theorem 5.10), and finally use
a special transformation of the resulting set. We assume that the theorem holds for all d′ < d and
proceed by induction on d for d ≥ 3.

Lemma 5.1. The order BLd
G is consistent with BLk

GS
for any S = {i1 < · · · < ik} ⊂ {1, . . . , d}.

Proof. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be vertices of VG with x <BLd
G
y and xj = yj

for j ̸∈ S. Denote x′ = (xi1 , . . . , xik) and y′ = (yi1 , . . . , yik). If BlockG(x) <BLd
GS

BlockG(y) then

BlockGS
(x′) <BLk

GS

BlockGS
(y′) since lexicographic order is consistent. This implies x′ <BLk

GS

y′.

If BlockG(x) = BlockG(y) then BlockGS
(x′) = BlockGS

(y′), and the domination order DBlockG(x)

is consistent with the domination order DBlockGS
(x′), since the partitions PG1 , . . . ,PGd

form a

domination collection. Thus, x′ <BLk
GS

y′.

This lemma along with lemmas 4.1, 4.2 implies that there is no loss of generality to assume that
A ⊆ VG is strongly compressed. To make A slice-compressed, several auxiliary results are needed.
We say that two blocks B1 and B2 in the same stack StackG(α) are consecutive, if there is no block
B3 ⊆ StackG(α) such that B1 <BLd

G
B3 <BLd

G
B2.

Lemma 5.2. Let A ⊆ VG be strongly compressed and B1 <BLd
G
B2 be consecutive blocks of a stack

in some direction i. If B2 ∩A ̸= ∅ then SkeletonG(B1) ⊆ A.

Proof. Note that StartG(B2) ∈ A, since B2 ∩ A ̸= ∅ and A is strongly compressed. We show that
all bones of B1 are in A. Let StartG(B1) = (s1, . . . , sd) and x = (s1, . . . , sj−1, xj , sj+1, . . . , sd) ∈
BoneG(B1, j) for some j ∈ {1, . . . , d}. So, at least d − 1 coordinates of x and StartG(B1) are the
same. Also, all coordinates except the i-th one of StartG(B1) and StartG(B2) match because the
blocks are in the same stack in direction i. Hence, StartG(B2) and x share at least d− 2 ≥ 1 equal
coordinates. Since A is strongly compressed, x <BLd

G
StartG(B2), and StartG(B2) and x match in

at least 1 coordinate, we conclude x ∈ A.

Lemma 5.3. Let A ⊆ VG be strongly compressed and blocks B1 and B2 with B1 <BLd
G
B2 share

the i-th bone for some i ∈ {1, . . . , d} and BoneG(B2, i) ⊆ A. Then B1 ⊆ A.

Proof. Let StartG(B2) = (s1, . . . , sd) and x = (x1, . . . , xi, . . . , xd) ∈ B1. Then we have

y = (s1, . . . , si−1, xi, si+1, . . . , sd) ∈ BoneG(B2, i).

Since x and y match in the i-th coordinate and x <BLd
G
y we conclude x ∈ A. This implies

B1 ⊆ A.

Corollary 5.4. Let A ⊆ VG be strongly compressed and blocks B1 <BLd
G
B2 share a bone. Let

StackG(α) be a stack containing B2 and B2 <BLd
G
B3 for some block B3 ⊆ StackG(α). If B1 ̸⊆ A

and B2 ∩A ̸= ∅ then B3 ∩A = ∅.
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Proof. For the contrary, assume B3 ∩ A ̸= ∅. Then SkeletonG(B2) ⊆ A, by Lemma 5.2. Since B1

and B2 share a bone, Lemma 5.3 implies B1 ⊆ A, which is a contradiction.

For a slice SliceG(q) and blocks B1 <BLd
G
B2 in it we say B1 and B2 are consecutive in slice

SliceG(q) if there is no block B3 in SliceG(q) with B1 <BLd
G
B3 <BLd

G
B2.

Lemma 5.5. Let blocks B1 <BLd
G
B2 be in slice SliceG(q). If B1 ̸⊆ A and A∩B2 ̸= ∅, then B1 and

B2 are consecutive in SliceG(q).

Proof. Let StackG(α) and StackG(β) be stacks of SliceG(q) in direction d that contain B1 and B2,
respectively. If StackG(α) = StackG(β) then the statement follows from lemmas 5.2 and 5.3. So
assume StackG(α) ̸= StackG(β).

Let B′
1 be the last block of StackG(α) and B′

2 be the first block of StackG(β). We show that
B′

1 = B1 and B′
2 = B2. Indeed, if B′

2 ̸= B2 then since SkeletonG(B
′
2) ⊆ A by Lemma 5.2, we get

B1 ⊆ A by Lemma 5.3, a contradiction. Also, if B′
1 ̸= B1 then by the definition of slices, B2 and

B′
1 share the first bone. Since B2 ∩ A ̸= ∅ and A is strongly compressed, for all i ∈ {2, . . . , d} we

have BoneG(B
′
1, i) ⊆ A. Thus, B1 ⊆ A by Lemma 5.3, since d ≥ 3 and B1 and B′

1 share the j-th
bone for all j ∈ {1, . . . , d− 1}. This implies B1 ⊆ A, a contradiction.

It remains to show is that there is no stack StackG(γ) with StackG(α) <BLd
G
StackG(γ) <BLd

G

StackG(β). Assume for the contrary that this is not the case and let B3 be the last block in
StackG(γ). We get BoneG(B3, j) ⊆ A for all j ∈ {2, . . . , d}, since A is strongly compressed and
B3 and B2 share the first bone. If B3 is the only block in StackG(γ), then B1 and B3 share the
d-th bone. Hence, B1 ⊆ A by Lemma 5.3, a contradiction. So, suppose that there is another block
B4 ⊆ StackG(γ). Then B3 and B4 share the j-th bone for all j ∈ {1, . . . , d−1}. Lemma 5.3 implies
B4 ⊆ A, since d ≥ 3. However, Lemma 5.3 implies B1 ⊆ A, since B1 and B4 share the first bone.
The obtained contradiction completes the proof.

The above lemmas are used as a basis for establishing the next results by using the pull-push
method.

Theorem 5.6. For any strongly compressed set A ⊆ VG there exist a strongly compressed and
slice-compressed set B ⊆ VG such that |A| = |B| and |IG(A)| ≤ |IG(B)|.

Remark 5.7. The proof of Theorem 5.6 has three steps. First, we use Lemma 5.5 to consider two
consecutive cubes. Then we are going to move vertices to the earlier block from the later one. This
is done in two steps, we first do a pull and then a push. The pull introduces a new set A′ that
is compressed similar to A, but not strongly compressed. We then use compression on A′ to pull
vertices to the earlier block from the later one and obtain a new set D′. The push deals with how
we transfer information gained from the pull on A′ to the set A. The push compares the pulled
vertices with corresponding vertices that come later in the block lexicographic order.

Properties of strong compression imply that the number of induced edges by a set obtained
after pulling cannot decrease. Similarly, the non-decreasing property of isoperimetric partitions of
graphs in the product guarantee that the pushing operation also does not decrease the number of
induced edges. This way, applying both operations to an optimal set results in another optimal
set satisfying some structural properties which make it looking closer to an initial segment of the
block lexicographic order.

We use the pull-push method three more times in Theorem 5.10.
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Proof. Let B1 <BLd
G
· · · <BLd

G
Bp be the blocks of some slice SliceG(q) and let r be the largest index

for which A ∩ Br ̸= ∅. Lemma 5.5 implies B1, . . . , Br−2 ⊆ A. Omitting trivial cases we assume
r ≥ 2 and Br−1 ̸⊆ A. We will pump vertices from Br to Br−1 by using the pull-push method.

Let S = {2, . . . , d} and Br = Z1×· · ·×Zd. Note that Z1 is the partition of G1 that all blocks in
SliceG(q) share. Denote by x ∈ Z1 the first vertex in the order OG1 , such that VGS(x) ∩ Br−1 ̸⊆ A
and by y ∈ Z1 the last vertex in the order OG1 such that VGS(y) ∩ Br ∩ A ̸= ∅. Therefore, for
all v ∈ Z1 with v <OG1

x we have VGS(v) ∩ Br−1 ⊆ A and for all v ∈ Z1 with v >OG1
y we have

VGS(v) ∩ Br ∩ A = ∅. Note that x is defined with respect to Br−1 and y with respect to Br. Also
note that x >OG1

y, since otherwise VGS(x) ∩Br−1 ⊆ A because A is strongly compressed. We are
going to pump vertices from VGS(y) ∩Br to GS(x) ∩Br−1 in the two following steps.

Pull: Let W be the projection of VGS(x) ∩Br−1 ∩A to VGS(y) ∩Br−1, that is

W = {(y, v2, . . . , vd)
∣∣ (x, v2 . . . , vd) ∈ GS(x) ∩Br−1 ∩A}.

Denote by E the set of all d− 1 dimensional blocks in Br−1 such that

E =
⋃
v∈Z1

v≥OG1
y

VGS(v) ∩Br−1,

and denote by R the set of all slices greater than SliceG(q), that is

R =
⋃
t>q

SliceG(t).

Consider the set

A′ = (A \ (E ∪R)) ∪W.

This set has the following properties:

1. A′ is compressed. To prove this we show that if v = (v1, . . . , vd) ∈ A′ and u = (u1, . . . , ud) ∈
VG with u1 ≤OG1

v1, . . . , ud ≤OGd
vd, then u ∈ A′. First, note that Br and Br−1 are the

last blocks that have a nonempty intersection with A′, since we removed R from A to get
A′. If v ̸∈ Br or v ̸∈ Br−1 then u ∈ A′, since A is strongly compressed and we only modified
Br−1 to get A′. If v ∈ Br−1 then u ∈ A′, since W ⊆ GS(y) ∩ Br−1 ∩ A. So, it remains to
consider the case v ∈ Br and u ∈ Br−1. Actually, it is sufficient to consider only the case
when Br and Br−1 are in the same stack, since otherwise there is some i ∈ {1, . . . , d} for
which ui >OGi

vi. So, suppose that Br and Br−1 are in the same stack in direction i. Note
that i ̸= 1 because Br and Br−1 are in the same slice. Without loss of generality, assume
that u1 = v1, . . . , ui−1 = vi−1, ui+1 = vi+1, . . . , ud = vd. Since A is strongly compressed,
we get u ∈ A. If u1 <OG1

y then u ∈ A′, by the definition of A′ because u ̸∈ E. If u1 = y
then (x, u2, . . . , ud) ∈ A because A is strongly compressed and d ≥ 3. Therefore, in all cases
u ∈ A′ by the definition of W and A′, implying A′ is compressed.

2. The set A′ ∩VGS(y) ∩Br−1 forms an initial segment of the domination order in block VGS(y) ∩
Br−1.

3. The set A′∩VGS(y)∩Br forms an initial segment of the domination order in block VGS(y)∩Br.

4. For all l < r − 1 it holds that Bl ⊆ A′.
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5. For all l > r it holds that Bl ∩A′ = ∅.
Denote D′ = CompG,OGS

(A′). The set D′ is obtained from A′ by moving n vertices from Br to

Br−1, where

a = min{|A′ ∩ (VGS(y) ∩Br)|, |(VGS(y) ∩Br−1) \ (A′ ∩GS(y) ∩Br−1)|}

Note that D′ is compressed, since A′ is compressed. Denote by Tr the set of the last a vertices
of A′ ∩ VGS(y) ∩ Br in the domination order on VGS(y) ∩ Br, and denote by Tr−1 the set of the
first a vertices of (VGS(y) ∩ Br−1) \ A′ in the domination order on VGS(y) ∩ Br−1. In these terms,
D′ = (A′ \ Tr) ∪ Tr−1. Taking into account Corollary 4.4 one has

0 ≤ |IG(D′)| − |IG(A′)| = ωG(Tr−1)− ωG(Tr).

Push: Denote

Tx = {(x, v2, . . . , vd)
∣∣ (y, v2, . . . , vd) ∈ Tr−1}

D = (A \ Tr) ∪ Tx.

Note that block Br, as well as any other block, belongs to d stacks of G (in different directions).
If there is a block B in one of those stacks such that Br <BLd

G
B then B ∩A = ∅ by Corollary 5.4

because Br−1 and Br share a bone. Therefore, A \Tr is compressed. By definition of x we get that
D is also compressed.

Now, Corollary 4.4, Lemma 2.4, and the non-decreasing property of PG1 imply

|IG(D)| − |IG(A)| = ωG(Tx)− ωG(Tr)

= ωG(Tx)− ωG(Tr−1) + ωG(Tr−1)− ωG(Tr)

≥ a(∆G1(x)−∆G1(y)) + 0

= a(∆(Z1,IG1
(Z1))(x)−∆(Z1,IG1

(Z1))(y))

≥ 0.

Apply to D the strong compression operation and denote by F the resulting set. One has |F | = |D|
and |IG(F )| ≥ |IG(D)|. Applying the described transformation over and over we obtain a stable
set B of the same size, which is strongly compressed and slice compressed, and for which |IG(A)| ≤
|IG(B)|.

We now apply a similar approach for reducing the problem of constructing optimal sets to block
compressed sets.

Lemma 5.8. Let A ⊆ VG be a strongly compressed set and let (s1, . . . , sd) be the start of the first
block of some slice SliceG(q). If for i ∈ {2, . . . , d} it holds

{s1} × · · · × {si−1} × VGi × {si+1} × · · · × {sd} ⊆ A,

then SliceG(p) ⊆ A for all p < q.

Proof. Indeed, if x = (x1, . . . , xi, . . . , xd) ∈ SliceG(p) then (s1, . . . , si−1, xi, si+1, . . . , sd) ∈ A and
x1 <OG1

s1. Hence, x ∈ A, since A is strongly compressed.

Lemma 5.9. Let A ⊆ VG be strongly compressed and slice-compressed and slices SliceG(p) <BLd
G

SliceG(q) be such that SliceG(q) ∩A ̸= ∅ and SliceG(p) ̸⊆ A. If StackG(αq) and StackG(αp) are the
first and last stacks of SliceG(q) and SliceG(p), respectively, then
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1. For any stack StackG(β) ⊆ SliceG(q) different from StackG(αq) it holds StackG(β) ∩A = ∅.

2. For any stack StackG(β) ⊆ SliceG(p) different from StackG(αp), it holds StackG(β) ⊆ A.

3. The slices SliceG(p) and SliceG(q) are consecutive, that is, q = p+ 1.

Proof. Assume to the contrary that the first claim does not hold. Since A is slice compressed, one
has StackG(αq) ⊆ A. By Lemma 5.8, SliceG(p) ⊆ A, a contradiction. For the second one note
that SliceG(q) ∩ A ̸= ∅ implies StackG(αp) ∩ A ̸= ∅, since A is strongly compressed. Thus, all
stacks preceding StackG(αp) must be in A. For the last statement, assume that q > p + 1. Then
SliceG(p) <BLd

G
SliceG(q − 1). Let (s1, . . . , sd) be the start of the first block in SliceG(q − 1). Since

A is strongly compressed we have

{s1} × · · · × {sd−1} × VGd
⊆ A.

For x = (x1, . . . , xd) ∈ SliceG(p) one has (s1, . . . , sd−1, xd) ∈ A and x1 < s1. Hence, x ∈ A, since A
is strongly compressed. Therefore, SliceG(p) ⊆ A, a contradiction.

Theorem 5.10. For any strongly and slice compressed set A ⊆ VG there exists a strongly and block
compressed set B ⊆ VG such that |A| = |B| and |IG(A)| ≤ |IG(B)|.
Proof. Let q be the largest integer such that SliceG(q) ∩ A ̸= ∅. Omitting trivial cases we assume
q > 1 and SliceG(q − 1) ̸⊆ A. By Lemma 5.9, if q ≥ 3 we have SliceG(1), . . . ,SliceG(q − 2) ⊆ A.
Let StackG(αq) be the first stack of SliceG(q), and StackG(αq−1) be the last stack in SliceG(q −
1). Note that we always take stacks in the d-th direction when talking about them in slices.
Lemma 5.9 tells that for every stack StackG(β) ⊆ SliceG(q) different from StackG(αq) one has
StackG(β)∩A = ∅. By the same lemma, StackG(β) ⊆ A for every stack StackG(β) ⊆ SliceG(q− 1)
different from StackG(αq−1). We will apply pull-push approach to pump vertices from StackG(αq)
to StackG(αq−1).

Let Bq = Z1 × · · · × Zd and Bq−1 = Y1 × · · · × Yd be the first blocks of StackG(αq) and
StackG(αq−1), respectively. Denote

HZ = (Z2, IG2(Z2))□ · · ·□(Zd−1, IGd−1
(Zd−1)),

HY = (Y2, IG2(Y2))□ · · ·□(Yd−1, IGd−1
(Yd−1)).

It follows that Zi and Yi are, respectively, the first and the last parts of the partition PGi for
i ∈ {2, . . . , d− 1}. These notations are illustrated in Figure 5.1. Remember that according to our
assumption, the partitions PG1 , . . . ,PGd

form a regular domination collection, which means that:

1. For i = 2, . . . , d− 1 the partition PGi is regular, i.e., δ(Zi,IGi
(Zi)) = δ(Yi,IGi

(Yi)).

2. There is a τ ∈ Sd−2 such that the domination orders on HZ and HY are both induced by
Dτ,d−2. Denote D = Dτ,d−2 for brevity.

Set S = {1, d} and let y ∈ VHY
be the first vertex in the order DHY

for which VGS(y) ∩
StackG(αq−1) ̸⊆ A. Also, let z ∈ VHZ

be the last vertex in the order DHZ
such that VGS(z) ∩

StackG(αq) ∩ A ̸= ∅. It follows that VGS(v) ∩ StackG(αq−1) ⊆ A for every v ∈ VHY
with v <DHY

y
and VGS(v) ∩ StackG(αq) ∩ A = ∅ for every v ∈ VHZ

with v >DHZ
z. Denote k = DHY

(y) and
l = DHZ

(z) and let StackG(ψ) be the first stack of the slice SliceG(q − 1).
Case 1: Assume k < l. Let W be the projection of A ∩ StackG(αq−1) to StackG(ψ), i.e.,

W = {(v1,D−1
HZ

(DHY
(u)), vd)

∣∣ (v1, u, vd) ∈ StackG(αq−1) ∩A}.
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Figure 5.1: Two consecutive slices and stacks that appear in the proof of Theorem 5.10.

Consider the set A′,

A′ = (A \ SliceG(q − 1)) ∪W.

Set A′ has the following:

1. A′ is compressed. To show this, let v = (v1, v2, . . . , vd) ∈ A′ and u = (u1, u2, . . . , ud) ∈ VG such
that ∃i ∈ {1, 2, . . . , d} with ui <OGi

vi and uj = vj for all j ̸= i. Without loss of generality we
assume that u ̸∈ SliceG(p) for p < q−1 since SliceG(p) ⊆ A′. First, suppose v ∈ SliceG(q−1).
If u ∈ SliceG(q − 1), then u, v ∈ StackG(ψ), hence u ∈ A′ as A is compressed. Now suppose
v ∈ SliceG(q). If u ∈ SliceG(q), then u ∈ A′ since A is compressed. If u ∈ SliceG(q − 1) then
i = 1, hence u = (u1, v2, v3, . . . , vd). Since SliceG(q) ∩A′ = SliceG(q) ∩A, we have v ∈ A. So,
any vertex (u′1, u

′
2, . . . , u

′
d−1, vd) ∈ VG ∩ SliceG(q− 1) with u′1 <OG1

v1 is in A as A is strongly

compressed. In particular, (u1,D−1
HY

(DHZ
(u2, u3, . . . , ud−1)), vd) ∈ A. This implies u ∈ A′.

2. For every v ∈ VHZ
the set VGS(v) ∩ A′ ∩ StackG(αq) is an initial segment of order BL2

GS(v)

restricted to StackG(αq), since A is strongly compressed.

3. For every v ∈ VHZ
the set VGS(v) ∩ A′ ∩ StackG(ψ) is an initial segment of order BL2

GS(v)

restricted to StackG(ψ), since A is strongly compressed and by the definition of W .

Construct D′ = CompG,S(A
′) (see Figure 5.2) and denote by y′ ∈ VHZ

the vertex corresponding

to y, i.e., y′ = D−1
HZ

(k). The set D′ can be constructed by moving vertices from VGS(v) ∩ A′ ∩
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GS(v)

v

StackG(αq)

GS(v)

y′ z y′ z

Gd

Figure 5.2: Construction of D′ in case 1 of the proof.

StackG(αq) to (VGS(v) ∩ StackG(ψ)) \ A′, for all v ∈ RHZ
, where RHZ

= {v ∈ VHZ

∣∣ y′ ≤DHZ

v ≤DHZ
z}. For v ∈ RHZ

denote by av the number of vertices moved,

av = min{|VGS(v) ∩A′ ∩ StackG(αq)|, |(VGS(v) ∩ StackG(ψ)) \A′|}.

The set D′ can be constructed from A′ by applying the following two steps for all v ∈ R:

1. Remove the set Tq,v consisting of the last av vertices of VGS(v) ∩A′ ∩ StackG(αq) in the order

BL2
GS(v)

restricted to StackG(αq).

2. Add the set Tq−1,v consisting of the first av vertices in (VGS(v) ∩ StackG(ψ)) \A′ in the order

BL2
GS(v)

restricted to StackG(ψ).

Corollary 4.4 implies

0 ≤ |IG(D′)| − |IG(A′)| =
∑

v∈RHZ

ωG(Tq−1,v)− ωG(Tq,v).

For v ∈ RHZ
denote

Tv = {(v1,D−1
HY

(DHZ
(u)), vd)

∣∣ (v1, u, vd) ∈ Tq−1,v}

and construct the set

D =

A \
⋃

v∈RHZ

Tq,v

 ∪
⋃

v∈RHZ

Tv.

We show that D is compressed. Indeed, let v = (v1, v2, . . . , vd) ∈ D and u = (u1, u2, . . . , ud) ∈ VG
such that ∃i ∈ {1, 2, . . . , d} with ui <OGi

vi and uj = vj for all j ̸= i. Without loss of generality we
assume u ̸∈ SliceG(p) for all p < q−1 since SliceG(p) ⊆ D. If v ∈ SliceG(q−1), then u ∈ SliceG(q−1)
by the previous assumption.
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If u ̸∈ StackG(αq−1), then u ∈ D since for any stack StackG(β) ⊆ SliceG(q − 1) different
from StackG(αq−1) we have StackG(β) ⊆ D. So suppose u ∈ StackG(αq−1). Then u ∈ D since
StackG(αq−1)∩D is a projection of StackG(ψ)∩D′ which is in the compressed setD′. If v ∈ SliceG(q)
and u ∈ SliceG(q), then u ∈ D as D ∩ SliceG(q) = D′ ∩ SliceG(q) and D′ is compressed. Finally,
if v ∈ SliceG(q) and u ∈ SliceG(q − 1) we may assume u ∈ StackG(ψ). Then i = 1, hence
u = (u1, v2, v3, . . . , vd). Since u ∈ StackG(ψ) ⊆ D, we get u ∈ D. Therefore, D is compressed.

One has,

|IG(D)| − |IG(A)| =
∑

v∈RHZ

ωG(Tv)− ωG(Tq,v),

=
∑

v∈RHZ

ωG(Tv)− ωG(Tq−1,v) + ωG(Tq−1,v)− ωG(Tq,v),

≥
∑

v∈RHZ

ωG(Tv)− ωG(Tq−1,v)

=
∑

v∈RHZ

av(∆G{1,...,d}\S (StartG{1,...,d}\S (HY )) + δHY
(DHZ

(v))−∆HZ
(v))

≥
∑

v∈RHZ

av(δHY
(DHZ

(v))−∆HZ
(v))

= 0.

Case 2: Assume k ≥ l. The reader might find it helpful to recall Figure 5.1 throughout this
case. Denote F = {π(d− 2)}. Note that F consists of the “most dominating direction” of H and
J under the order D. We can write z = (z1, . . . , zd−2) and y = (y1, . . . , yd−2), and denote

Z∗ = Z2 × · · ·Zπ(d−1)−1 × Zπ(d−1)+1 × · · · × Zd−1,

Y ∗ = Y2 × · · ·Yπ(d−1)−1 × Yπ(d−1)+1 × · · · × Yd−1,

z∗ = (z1, . . . , zπ(d−2)−1, zπ(d−2)+1, . . . , zd−2),

y∗ = (y1, . . . , yπ(d−2)−1, yπ(d−2)+1, . . . , yd−2).

Further denote by Y and Z the domination orders on HYF
(y∗) and HZF

(z∗), respectively. Note that
the orders Y and Z are just the restrictions of DHY

to HYF
(y∗) and DHZ

to HZF
(z∗) respectively.

Denote m = Y(Y ) and n = Z(z). Note that HYF
(y∗) and HZF

(z∗) are one dimensional structures.
Furthermore, the graph (HYF

(y∗), IG(HYF
(y∗)) is isomorphic to the graph induced by the last

part of the partition PGπ(d−2)+1
, and the graph (HZF

(z∗), IG(HZF
(z∗)) is isomorphic to the graph

induced by the first part of the partition PGπ(d−2)+1
. More formally,

(HYF
(y∗), IG(HYF

(y∗)) ∼= (Yπ(d−2)+1, IGπ(d−2)+1
(Yπ(d−2)+1))

(HZF
(z∗), IG(HZF

(z∗)) ∼= (Zπ(d−2)+1, IGπ(d−2)+1
(Zπ(d−2)+1))

Thus, there are orders Y and Z in these graphs, corresponding to the orders Y and Z.
Case 2.1: Assume m < n (see Figure 5.3).
Denote

y′ = (z1, . . . , zπ(d−2)−1,Z
−1

(m), zπ(d−2)+1, . . . , , zd−2),

z′ = (y1, . . . , yπ(d−2)−1,Y
−1

(n), yπ(d−2)+1, . . . , , yd−2).

19



Zπ(d−2)

Z∗

J

Yπ(d−2)

Y ∗

HY

z∗

z

y∗

y

n

m

Figure 5.3: General setup for case 2. Case 2.1 is shown, since m < n.

Denote by E the set of all two-dimensional sections under DHZ
and S = {1, d} of StackG(ψ)

preceding StackG(ψ) ∩ VGS(y′), i.e.,

E =
⋃

v∈VHZ
v<DHZ

y′

(StackG(ψ) ∩ VGS(v)).

For v = (y1, . . . , yπ(d−2)−1, u, yπ(d−2)+1, . . . , , yd−2) ∈ RHY
with RHY

= {v ∈ VHY

∣∣ y ≤DHY
v ≤DHY

z′} denote

v′ = (z1, . . . , zπ(d−2)−1,Z
−1

(Y(u)), zπ(d−2)+1, . . . , , zd−2).

For v ∈ RHY
denote by Wv the projection of VGS(v)∩StackG(αq−1)∩A to VGS(v′)∩StackG(ψ), i.e.,

Wv = {(v1, v′, vd)
∣∣ (v1, v, vd) ∈ VGS(v) ∩ StackG(αq−1) ∩A},

and put

W =
⋃

v∈RHY

Wv.

Finally, define

A′ = (A \ SliceG(q − 1)) ∪ E ∪W.

Set A′ has the following properties:

1. A′ is compressed. The proof is similar to case 1 and is left to the reader.

2. For each v ∈ VHZ
the set VGS(v) ∩ A′ ∩ StackG(αq) (see Figure 5.4 for the general picture) is

an initial segment of BL2
GS(v)

restricted to StackG(αq), since A is strongly compressed.

3. For each v ∈ VHZ
the set VGS(v) ∩ A′ ∩ StackG(ψ) (see Figure 5.4 for the general picture) is

an initial segment of BL2
GS(v)

restricted to StackG(ψ), since A is strongly compressed and by
the definition of W .

Denote D′ = CompG,S(A
′). The set D′ can be constructed by moving av vertices from VGS(v) ∩

A′ ∩ StackG(αq) to (VGS(v) ∩ StackG(ψ)) \ A′, for all v ∈ RHZ
where RHZ

= {v ∈ VHZ

∣∣ y′ ≤DHZ

v ≤DHZ
z} and

av = min{|VGS(v) ∩A′ ∩ StackG(αq)|, |(VGS(v) ∩ StackG(ψ)) \A′|}.

The set D′ can be obtained from A′ by applying the following steps for every v ∈ RHZ
:

20



HZ HY

z∗

z z′

y′

y∗

y
v′ v

n n

m m

VGS(v′) ∩ StackG(ψ) VGS(v) ∩ StackG(αq−1)

Figure 5.4: Setup for the pull part in Case 2.1

1. Remove the set Tq,v consisting of the last av vertices of VGS(v) ∩A′ ∩ StackG(αq) in the order

BL2
GS(v)

restricted to StackG(αq).

2. Add the set Tq−1,v consisting of the first av vertices of (VGS(v) ∩ StackG(ψ)) \A′ in the order

BL2
GS(v)

restricted to StackG(ψ).

Corollary 4.4 implies

0 ≤ |IG(D′)| − |IG(A′)| =
∑

v∈RHZ

ωG(Tq−1,v)− ωG(Tq,v).

For v ∈ RHY
denote

Tv = {(v1, v, vd)
∣∣ (v1, v′, vd) ∈ Tq−1,v′}.

and consider the set

D =

A \
⋃

v∈RHZ

Tq,v

 ∪
⋃

v∈RHY

Tv.

Similarly to case 1 it can be shown that D is compressed. One has,

|IG(D)| − |IG(A)| =
∑

v∈RHY

ωG(Tv)− ωG(Tq,v′),

=
∑

v∈RHY

ωG(Tv)− ωG(Tq−1,v′) + ωG(Tq−1,v′)− ωG(Tq,v′),

≥
∑

v∈RHY

ωG(Tv)− ωG(Tq−1,v′)

=
∑

v∈RHY

av(∆G{1,...,d}\S (StartG{1,...,d}\S (HY )) + ∆HY
(v)−∆HZ

(v′))

≥
∑

v∈RHY

av(0 + ∆HY
(v)−∆HZ

(v′))

≥ 0.
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Note that the last inequality follows from the non-decreasing property of PG2 , . . . ,PGd−1
.

Case 2.2: Now assume m ≥ n. Denote by E the set of all sections under DHZ
and S of

StackG(ψ) preceding StackG(ψ) ∩ VGS(z), i.e.,

E =
⋃

v∈VHZ
v<DHZ

z

StackG(ψ) ∩ VGS(v).

Let W be the projection of VGS(y) ∩ StackG(αq−1) ∩A to VGS(z) ∩ StackG(ψ), i.e.,

W = {(v1, z, vd)
∣∣ (v1, y, vd) ∈ VGS(y) ∩ StackG(αq−1) ∩A}.

Consider the set

A′ = (A− SliceG(q − 1)) ∪ E ∪W.

Set A′ has the following properties:

1. A′ is compressed. The proof is similar to case 1 and is left to the reader.

2. The set VGS(z) ∩ A′ ∩ StackG(αq) is an initial segment of BL2
GS(z)

restricted to StackG(αq),
since A is strongly compressed.

3. The set VGS(z)∩A′∩StackG(ψ) is an initial segment of BL2
GS(z)

restricted to StackG(ψ), since
A is strongly compressed and by the definition of W .

Construct set D′ = CompG,S(A
′) by moving a vertices from VGS(z)∩A′∩StackG(αq) to (VGS(z)∩

StackG(ψ)) \A′, where

a = min{|VGS(z) ∩A′ ∩ StackG(αq)|, |(VGS(z) ∩ StackG(ψ)) \A′|}.

More exactly, the set D′ can be obtained from A′ in two following steps:

1. Remove the set Tq consisting of the last a vertices of VGS(z) ∩ A′ ∩ StackG(αq) in the order

BL2
GS(z)

restricted to StackG(αq).

2. Add the set Tq−1 consisting of first a vertices of (VGS(z)∩StackG(ψ))\A′ in the order BL2
GS(z)

restricted to StackG(ψ).

Corollary 4.4 implies

0 ≤ |IG(D′)| − |IG(A′)| = ωG(Tq−1)− ωG(Tq).

Denote

Ty = {(v1, y, vd)
∣∣ (v1, z, vd) ∈ Tq−1}

and let

D = (A \ Tq) ∪ Ty.

22



Similarly to case 1 it can be shown that the set D is compressed, One has:

|IG(D)| − |IG(A)| = ωG(Ty)− ωG(Tq),

= ωG(Ty)− ωG(Tq−1) + ωG(Tq−1)− ωG(Tq),

≥ ωG(Ty)− ωG(Tq−1)

= a(∆G{1,...,d}\S (StartG{1,...,d}\S (HY )) + ∆HY
(y)−∆HZ

(z))

≥ a(0 + ∆HY
(y)−∆HZ

(z))

≥ 0.

The last inequality follows from the non-decreasing property of PG2 , . . . ,PGd−1
.

In cases 1 and 2 we showed how move vertices from SliceG(q) to SliceG(q − 1) to transform A
into set D such that |A| = |D| and |IG(A)| ≤ |IG(D)|. Make D strongly compressed and denote
the resulting set by E. By Theorem 5.6 there is a strongly compressed and sliced compressed set
F with

|A| = |D| = |E| = |F |,
|IG(A)| ≤ |IG(D)| ≤ |IG(E)| ≤ |IG(F )|.

Repeat the transformations described above until we get a stable set B. This will be the case
because we replace some vertices with the ones that come earlier in the order BLd

G. The set B is
strongly compressed and block compressed, |A| = |B|, and |IG(A)| ≤ |IG(B)|.

We are almost done with the proof of our main result. Here is a summary of what we have
established:

1. Reduced the problem to strongly compressed sets.

2. Reduced the problem to slice compressed sets.

3. Reduced the problem to block compressed sets.

However, it could be the case that we get a block compressed set which has only one partially
filled block that is not ordered according to the order BLd

G. But this is not a problem, since we
assumed that the domination order on this block is optimal. In this case we just replace the set of
vertices in this block with an initial segment of the same size in order BLd

G. The resulting set will be
optimal because of the second property of isoperimetric partitions. Namely, for the partition PGj =
{OGj [a1, b1] <OGj

· · · <OGj
OGj [ak, bk]} one has |I(OGj [a1, bi−1], {v})| = δ(ai) = ∆Gj (OGj (ai)) for

all v ∈ OGj [ai, bi]. With this concluding remark the proof of the main result is complete.

6 Applications of the Main result

In this section we show that most previously known results on edge-isoperimetric problems are
corollaries of our main Theorem 2.5. Let us start with the theorem of Ahlswede-Cai as the most
general one. For this we define the atomic partition of an isoperimetric graph G with optimal order
O, as AG = {{OG(1)}, . . . , {OG(|V |)}} with {OG(1)} <OG

· · · <OG
{OG(|V |)}.

Corollary 6.1. Let G1, . . . , Gd be isoperimetric graphs and for S ⊂ {1, . . . , d} let BL|S|
GS

be the
block-lexicographic order based on atomic partitions AG1 , . . . ,AGd

. If for all i, j ∈ {1, . . . , d} with
i < j the order BL2

Gi□Gj
is optimal, then BLd

G is optimal for d ≥ 3.
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Proof. Atomic partitions are regular and non-decreasing. So, all the conditions of Theorem 2.5 are
satisfied.

The block-lexicographic order of Corollary 6.1 is just the lexicographic order. Every block of
this order consists of only one vertex. The blocks are ordered according to their starts which, in
turn, are ordered lexicographically. Thus, there is a unique domination order of each block and
unique block lexicographic order for each sub-product. This way slices are (d − 1)-dimensional
sub-products and stacks are 1-dimensional ones. Also, the proofs of most statements in section 5
can be merely simplified and deduced from the properties of the strong compression.

Evidently, every application of Theorem 1.3 based on the local-global principle follows from
Corollary 6.1. Let us mention just a few of them. In all these results the 2-dimensional case must
be handled separately. In some cases, e.g., the hypercube it is rather trivial, whereas in other cases
like cliques or Petersen graphs it requires more work. There are not any general methods known to
us that eliminate multiple sub-cases by working with compressed sets in products of two graphs.

Corollary 6.2. The order Ld
Kd

2
is optimal for every d ≥ 2.

Corollary 6.3 (Lindsey [17]). Suppose that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nd. The lexicographic order is
optimal for Kn1□ · · ·□Knd

.

Corollary 6.4 (Bezrukov-Bulatovic-Kuzmanovski [5]). Suppose that 1 ≤ n1 ≤ · · · ≤ nd and
consider the complete bipartite graphs Kn1,n1 , . . . ,Knd,nd

. The lexicographic order is optimal for
Kn1,n1□ · · ·□Knd,nd

.

Corollary 6.5 (Bezrukov and Elsässer [9] for s = 2, Bezrukov, Bulatovic and Kuzmanovski for
arbitrary s ≥ 2). Suppose that s ≥ 2, p ≥ 3 and 1 ≤ i ≤ p− i and let G be an isoperimetric graph
such that

δG = (0, . . . , p− 1, p− i, . . . , p− i+ (p− 1), . . . , (s− 1)(p− i), . . . , (s− i)(p− 1) + p− 1).

The lexicographic order is optimal for Gd, for any d ≥ 2.

It is important to note that graphs with δ-sequences specified in Corollary 6.5 exist. Such graphs
are constructed in [5] by a method involving the join operation on graphs. In case s = 2 one can
construct such a graph by removing i disjoint perfect matchings form K2p. There are even more
graphs studied in [9] and [5] to which the local-global principle is applicable. Below we present
several results that do not follow from the theorem of Ahlswede-Cai. For this we need to define the
standard block-lexicographic order.

Let G1, . . . , Gd be isoperimetric graphs along with their standard partitions MG1 , . . . ,MGd
.

Recall from Theorem 2.3 that the subgraphs induced by monotonic sets are cliques. Hence, a
subgraph of G = G1□ · · ·□Gd induced by every block is isomorphic to the product of cliques which
admits nested solutions according to the result of Lindsey (cf. Corollary 6.3). In fact, the optimal
order is a domination order! We make it more explicit now.

Let S ⊆ {1, . . . d} and B = VKn1
× · · · × VKn|S|

be a block of GS . Define a total order η :

{0, 1 . . . , |S|} → {0, 1, . . . |S|} as follows: for i, j ∈ {1, . . . , |S|} we say i <η j iff ni < nj or if
ni = nj and i < j. Therefore, since 1 ≤ nη(1) ≤ · · · ≤ nη(d) the lexicographic order is optimal

for Knη(1)
□ · · ·□Knη(d)

. Note that η ∈ Sd and there is a unique domination order Dη,|S|. So, for

K = Kn1□ · · ·□Kn|S| we have the induced domination order Dη,|S|
K on K. Furthermore, the order

Dη,|S|
K is optimal, since lexicographic order is optimal for Knη(1)

□ · · ·□Knη(d)
.
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Hence, for any block B we can construct a permutation η for which there is an optimal dom-
ination order on the graph induced by a block. It is easily seen that MG1 , . . . ,MGd

is a domina-

tion collection with these domination orders. We call Dη,|S|
K the standard block domination order

on B. Furthermore, we call the block lexicographic orders formed by the standard partitions
MG1 , . . . ,MGd

and the standard block domination orders, the standard block lexicographic orders

and for S ⊆ {1, . . . , d} denote them by SBL|S|
GS

.
Let us talk on the regularity of partitions for regular graphs. Many authors in the past have

noticed the following result.

Lemma 6.6. If G = (V,E) is regular then A ⊆ V is optimal iff V \A is optimal.

The above lemma provides a relationship between regular graphs and their regular partitions.

Corollary 6.7. Let G = (V,E) be a regular isoperimetric graph with optimal order OG and let O′
G

be its reverse order. Then the order O′
G is optimal and the partition MG is regular.

Proof. Note that for any i ∈ {1, . . . , V } the set OG[1, i] is optimal. Thus, O′
G[1, |V | − i + 1] is

optimal for all i ∈ {1, . . . , |V |} by Lemma 6.6. Therefore, the first and last monotonic segments of
the order OG are of the same size.

By Corollary 6.7, if the graph G is isoperimetric and regular, then MG is an isoperimetric,
non-decreasing and regular partition. See [11] for properties of the δ-sequences of regular graphs.

Corollary 6.8. Let G1, . . . , Gd be regular isoperimetric graphs with their respective standard par-
titions MG1 , . . . ,MGd

and G = G1□ · · ·□Gd. If SBLGi□Gj is optimal for all i < j then SBLd
G is

optimal for d ≥ 3.

Proof. We have that MGi is non-decreasing and regular. Thus, MG1 , . . . ,MGd
is a regular dom-

ination collection by the definition of the standard block-domination order. The statement then
follows from Theorem 2.5.

Taking all this into account, we show how to obtain some results which are not covered by the
theorem of Ahlswede-Cai.

Corollary 6.9 (Bezrukov-Das-Elsässer [8]). Let G1 be the Petersen graph, G2 = K2, and d1, d2 ≥ 0.
Then G = Gd1

1 □Gd2
2 has nested solutions and the standard block-lexicographic order is optimal.

Proof. One just needs to show that the standard block-lexicographic order is optimal forG2
1, G1□G2

and G2
2. This is trivial for G2

2 and the other cases are covered in Chapter 9 of [15], and in [8].
Therefore, the statement follows from Corollary 6.8.

The authors of [8] first proved Corollary 6.9 for d1 ≥ 0 and d2 = 0. The general case required
more work. The authors had to define a new order and handle multiple new cases. In the next
results the two-dimensional cases needed for Corollary 6.8 are covered in [12].

Corollary 6.10 (Carlson [12]). If d1, d2, d3 ≥ 0 then the standard block-lexicographic order is
optimal for Cd1

5 □Cd2
4 □Cd3

3 .

Corollary 6.11 (Carlson [12]). If d1, d2, d3 ≥ 0 and n ≥ 6 then the standard block-lexicographic
order is optimal for Cn□Cd1

5 □Cd2
4 □Cd3

3 .
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It is worse to note that in [12] Carlson first proved Theorem 1.9. Then after several auxiliary
results and multiple statements about higher dimensions he finally established the results outlined
in Corollaries 6.10 and 6.11. Throughout these steps Carlson needed to define some special orders.
In contrast to this, in our case we need just one standard block-lexicographic order. A similar
situation occurred in [8] by proving Corollary 6.9. Our methods allow us to further extend the
results of Carlson.

Corollary 6.12. If d1, d2, d3, d4 ≥ 0 and n ≥ 6 then the standard block-lexicographic order is
optimal for Cd1

5 □Cd2
4 □Kd3

2 □Cd4
3 and Cn□Cd1

5 □Cd2
4 □Kd3

2 □Cd4
3 .

Proof. We just need to check the two-dimensional cases of Corollary 6.8 for the product of every
graph in question with K2. They, however, follow from the two-dimensional cases of [12] since an
initial segment of size 2 in any connected graph induces K2. Also, note that C3 is isomorphic to
K3. Therefore, the statement follows from 6.8.

7 Concluding remarks and future directions

In this paper we generalized the Ahlswede-Cai Theorem and proved that almost all results in the
area of edge-isoperimetric problems on Cartesian products of graphs are consequences of our main
result. In turn, our result can be generalized like it is done in the original local-global principle
paper [3, 2]. In particular, Theorem 2.5 has an analog for ΘG. In general, there is an analog of
Theorem 2.5 for any sub-modular function defined in [3, 2]. We only worked with IG to make the
paper easier to read.

Block-lexicographic orders are made up of two parts: the block part and the lexicographic part.
One can think of defining block-domination orders similarly to how we handled domination orders
by starting with lexicographic order. A natural question is if we can go even further. If we have
some d-dimensional order O, can we say anything on the optimality of a block order where the
blocks are ordered according to the order O? What properties does O have to satisfy? Note that the
optimal orders in Theorems 1.5 and 1.6 are block orders, but not lexicographic ones. The orders
use the standard partitions for the blocks. We would be surprised if the local-global principles
could not be extended to such orders. Answering these questions would settle Harper’s question
completely. Here is a conjecture that we believe would help to find answers to the posed questions.

Conjecture 7.1. If d1, d2 ≥ 0 and n1, n2 ≥ 2 then P d1
n1
□Kd2

n2
has nested solutions.

A lot of work has been done for the products of 3 or more graphs and very powerful methods
have been developed. However, the 2-dimensional case still requires a special treatment and no
general methods are known for it. One possible direction could be to improve the upper bound for
i in Corollary 6.5. Examples show that it can be much higher. For s = 2 the following conjecture
is proved in [9].

Conjecture 7.2. Statement of Corollary 6.5 is valid for s ≥ 2, p ≥ 3 and 1 ≤ i ≤ p − p/s. For
i > p− p/s there are no nested solutions.

The optimal order for the product of two Petersen graphs was established by using a computer
in [8]. Harper developed a method in [15] which in many cases can be used without computers.
It would be interesting to develop general methods for the products of two graphs to handle cases
like the powers of Petersen graph. To stimulate this we present another conjecture.

Conjecture 7.3. If d1, d2, d3, d4d5 ≥ 0, n ≥ 6 and G is the Petersen graph, then the standard block
lexicographic order is optimal for Cd1

5 □Gd2□Cd3
4 □Kd4

2 □Cd5
3 and Cn□Cd1

5 □Gd2□Cd3
4 □Kd4

2 □Cd5
3 .

26



References

[1] Ahlswede, R., and Bezrukov, S. L. Edge isoperimetric theorems for integer point arrays.
Appl. Math. Lett. 8, 2 (1995), 75–80.

[2] Ahlswede, R., and Cai, N. General edge-isoperimetric inequalities. I. Information-
theoretical methods. European J. Combin. 18, 4 (1997), 355–372.

[3] Ahlswede, R., and Cai, N. General edge-isoperimetric inequalities. II. A local-global prin-
ciple for lexicographical solutions. European J. Combin. 18, 5 (1997), 479–489.

[4] Bernstein, A. J. Maximally connected arrays on the n-cube. SIAM J. Appl. Math. 15
(1967), 1485–1489.

[5] Bezrukov, S., Bulatovic, P., and Kuzmanovski, N. New infinite family of regular
edge-isoperimetric graphs. Theoret. Comput. Sci. 721 (2018), 42–53.

[6] Bezrukov, S. L. Edge isoperimetric problems on graphs. In Graph theory and combinato-
rial biology (Balatonlelle, 1996), vol. 7 of Bolyai Soc. Math. Stud. János Bolyai Math. Soc.,
Budapest, 1999, pp. 157–197.

[7] Bezrukov, S. L. On an equivalence in discrete extremal problems. Discrete Math. 203, 1-3
(1999), 9–22.
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