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Abstract

Macaulay posets are posets in which an analog of the Kruskal-Katona Theorem holds.
Macaulay rings (also called Macaulay-Lex rings) are rings in which an analog of Macaulay’s
Theorem for lex ideals holds. The study of both of these objects started with Macaulay almost
a century ago. Since then, these two branches have developed separately over the past century,
with the last link being the Clements-Lindström Theorem.

For every ring that is the quotient of a polynomial ring by a homogeneous ideal we define the
poset of monomials. Under certain conditions, we prove a Macaulay Correspondence Theorem,
a ring is Macaulay if and only if its poset of monomials is Macaulay. Furthermore, the tensor
product of rings corresponds to the Cartesian product of the posets of monomials. This allows us
to transfer results between rings and posets. The Macaulay Correspondence Theorem generalizes
a theorem by Shakin, and allows ideals that are not monomial with orders that are different from
the lexicographic one. By using this translation, we give several answers to a problem posed by
Mermin and Peeva, a positive answer to Hoefel’s question about applying Macaulay poset theory
to ring theory, and deduce several other results in both algebra and extremal combinatorics.

A new proof of the Mermin-Murai Theorem on colored square free rings is presented by using
star posets. We extend the Mermin-Murai Theorem to rings that are not square free by using
the spider Macaulay Theorem of Bezrukov and Elsässer. Using the Mermin-Peeva and Shakin
results about adding a variable to a ring such that it remains Macaulay, we give an answer to
a question posed by Bezrukov and Leck about taking the product of a Macaulay poset with
a chain. Some results of Chong also give answers to the Bezrukov-Leck problem. All of these
results have a common feature. They involve the tensor product of rings whose Hasse graphs
of the poset of monomials are trees. We call such rings, tree rings. We give a classification
of Macaulay rings that are the tensor product of a tree ring. Finally, we show that there are
Macaulay rings that are not the tensor product of tree rings, and present the first examples of
Macaulay rings that are not quotients by a monomial ideal and not quotients by a toric ideal.
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1 Introduction

Macaulay posets (Definition 2.2.1) are posets in which an analog of the Kruskal-Katona Theorem
holds. They have been extensively studied in the literature on discrete extremal problems, appear
as topics in textbooks [14, 25, 27, 31], and survey papers have been devoted to them [9, 10]. In
many situations, they are special cases of more general vertex isoperimetric problems on graphs
[10, 11, 18, 25, 31].

The Macaulay property on posets provides several applications in pure mathematics and engi-
neering. If a poset is Macaulay with a rank-greedy order then a solution to the maximum weight
ideal problem follows. Edge-isoperimetric problems on graphs reduce to the maximum weight ideal
problem, whence the Macaulay property gives solutions to edge-isoperimetric problems as well.
These implications were observed by Bezrukov in [6], and have been included among other discrete
extremal problems in [25, 31]. Edge-isoperimetric problems give solutions to many other problems.
The survey [5] and the book [31] go over some, including the wirelength problem, the bisection
width and edge congestion problem, and graph partitioning problems. It is interesting to note
that solving the edge-isoperimetric problem on the Petersen graph [7] was motivated by applica-
tion to parallel processing. For an application in pure mathematics, Daykin [24] showed that the
Erdös-Ko-Rado Theorem follows from the Kruskal-Katona Theorem.

The study of Macaulay rings (Definition 2.5.6) started almost a century ago with Macaulay
[46]. Macaulay’s Theorem says that for every homogeneous ideal in a polynomial ring over a field,
there exists a monomial lex ideal with the same Hilbert function. There has been a lot of interest
in generalizing Macaulay’s Theorem to quotients of polynomial rings [28, 29, 47, 48, 49, 50, 55, 56].
Lex ideals play an important role in Hartshorne’s proof that the Hilbert scheme is connected [32].
Another very remarkable result is due to Bigatti [13], Hulett [34] and Pardue [51], which states
that lex ideals in a polynomial ring have the largest graded Betti numbers among all ideals with
the same Hilbert function.

We have two main contributions to both of these Macaulay theories. The first (Section 2) is
being able to translate Macaulay theorems between posets and rings. The second (Section 4 and
Section 5) is applying these translation techniques to deduce new and old facts for both theories.
Section 3 is dedicated to giving general classes of orders that unify Macaulay theorems under a
single guise. A lot of questions come up based on the previous sections and we list these problems
in Section 6.
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The main dictionary results translating between rings and posets are Theorem 2.6.3 and Theo-
rem 2.7.3. Another useful tool for translating between posets and rings is Bezrukov’s Dual Lemma
2.2.4, but this is not new. These theorems are achieved by defining the poset of monomial (see
Section 2.3) for every quotient of a polynomial ring by a homogeneous ideal. It turns out that
the poset structure and ring properties interact with each other in interesting ways. The results
that follow are deduced by applying these translation theorems in clever ways. These applications
give many answers to a problem posed by Mermin and Peeva 2.5.7. As a byproduct, we give a
positive answer to a question of Hoefel [33]. Hoefel wanted to know if Macaulay poset theory can
be applied to the theory of Macaulay rings. The answer is an overwhelming yes, and furthermore
the implications go both ways.

We show that the Mermin-Murai Theorem 4.1.6 follows from the Macaulay problem on star
posets, which was settled two decades earlier. It turns out that the Mermin-Murai Theorem holds
for rings that are not square free. This is captured in Theorem 4.2.6. On the combinatorics side we
give an answer (Corollary 4.3.3) to a problem by Bezrukov and Leck, which asks which Macaulay
posets remain Macaulay after we take their cartesian product with a chain. This is done by using the
Mermin-Peeva and Shakin Theorem 4.3.2 that allows us to add a variable to a Macaulay ring, such
that it remains Macaulay. Chong’s results in Section 4.3 also give answers to the Bezrukov-Leck
problem.

All the above mentioned rings have something in common. They can be decomposed into a
tensor product of rings, where the Hasse diagram of the poset of monomials of every individual
ring is a tree. In Theorem 4.4.5 we obtain a classification of such rings, where we use copies of one
ring in the product. Going in another direction, we show (Theorem 4.5.3) that there are Macaulay
rings that are a tensor product, not involving any rings with this tree condition.

All the results up until now do not use the full power of the machinery developed in Section
2. In Section 5 we give the first examples of Macaulay rings that are not quotients by a monomial
or toric ideal, see Corollary 5.1.3 and Corollary 5.2.3. These corollaries are obtained by using
everything from Section 2.

2 Translating Between Posets and Rings

This section introduces all the tools needed to translate results between posets and rings. The
results obtained in this section are key to understanding and proving claims in Section 4, Section
5, and Section 6.

2.1 Partially Ordered Sets

This section introduces definitions and notation for partially ordered sets needed for the rest of the
paper. Most definitions here are based on Engel’s book [25]. However, some notation is slightly
different compared to [25], and some new concepts are introduced.

Definition 2.1.1 (Natural Numbers). The set N includes 0. For n ∈ N we define [n] = {1, . . . , n}
and [n]0 = {0, . . . , n− 1}. We also define [∞] = N \ {0} and [∞]0 = N.

Definition 2.1.2 (Partially Ordered Sets). A partially ordered set (poset) is a pair P = (S,O),
where S is a set and O is a partial order (a reflexive, antisymmetric and transitive relation) on S.
We will often abuse notation conflating P and S. For a, b ∈ P we say a ≤P b iff (a, b) ∈ O. We
write a <P b iff a ≤P b and a ̸= b. Also, we say that b covers of a iff a < b and there is no x ∈ P
such that a < x < b.
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Definition 2.1.3 (Minimums and Maximums). We say that a is a minimum element of P iff
whenever we have x ∈ P such that x ≤ a then x = a. We say that a is a maximum element of P
iff whenever we have x ∈ P such that x ≥ a then x = a.

Definition 2.1.4 (Grid Point/Lattice Point/Multisets). Suppose that S is a set. A grid point/lattice
point/multiset on S is a function f : S → N. If S is finite then we define the size of f by

|f | =
∑
x∈S

f(x),

and we say that f has dimension |S|.
Definition 2.1.5 (Set of Grid Points/Multisets). Suppose that we have a set S = {a1, . . . , ad} and
consider ℓ1, . . . , ℓd ∈ N∪{∞}, with d ≥ 1. We define the set of all grid points/lattice points/multisets
on S and lengths (with repetition limits) (ℓ1, . . . , ℓd) by

MS(ℓ1, . . . , ℓd) = {f : S → N
∣∣ f(a1) < ℓ1, . . . , f(ad) < ℓd}.

Remark 2.1.6. Note that one can identify f ∈M[d](ℓ1, . . . , ℓd) with (f(1), . . . , f(d)) ∈ Nd.

Definition 2.1.7 (Lattice of Multisets). Suppose that f, g are multisets on S with |S| = d ≥ 1
and consider ℓ1, . . . , ℓd ∈ N∪ {∞}. We say that f is a submultiset of g and write f ⊆ g if and only
if for all x ∈ S we have f(x) ≤ g(x). Then ⊆ is a partial order on MS(ℓ1, . . . , ℓd). The lattice of
multisets of dimension d on S and lengths (ℓ1, . . . , ℓd) is the poset

MS(ℓ1, . . . , ℓd) = (MS(ℓ1, . . . , ℓd),⊆).

Definition 2.1.8 (Ranked Posets). Suppose that we have a poset P and a function r : P → N.
The function r is called a rank function on P if the following conditions hold:

1. There is a minimum element x ∈ P such that r(x) = 0.

2. Whenever we have a, b ∈ P such that b covers a, then we must have r(a) + 1 = r(b).

We also call P a ranked poset if such an r exists. We define the rank of P to be

r(P ) = max
a∈P

r(a).

Example 2.1.9. Any multiset lattice of the form M = M[d](ℓ1, . . . , ℓd) is ranked with r : M → N
given by r(f) =

∑
x∈[d] f(x) for all f ∈ M . Furthermore, r is the unique rank function on M .

Definition 2.1.10 (Cartesian Product of Posets). Suppose that d ∈ N with d ≥ 1 and consider
posets Pi = (Si,Oi) for all i ∈ [d]. First, put S = S1 × · · · × Sd. Next, we define a partial order O
on S, such that for any (x1, . . . , xd), (y1, . . . yd) ∈ S we have

(x1, . . . , xd) ≤O (y1, . . . , yd) if and only if for all i ∈ [d] we have xi ≤Oi yi.

We write

O = O1 × · · · × Od.

The poset P = (S,O) is called the Cartesian product of (P1, . . . ,Pd) and we write

P = P1 × · · · × Pd.

Next, suppose that P1, . . . ,P have rank functions r1, . . . , rd respectively. We define the product
rank function r : P → N such that r((x1, . . . , xd)) = r1(x1) + · · ·+ rd(xd) for all (x1, . . . , xd) ∈ P.
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Definition 2.1.11 (Poset Isomorphism). For any set S we denote the identity function on S by
idS . Suppose that P1 and P2 are posets. Let σ : P1 → P2 be a function. We say that σ is a
poset isomorphism iff the following hold:

1. There exists a function τ : P2 → P1 such that τ ◦ σ = idP1 and σ ◦ τ = idP2 .

2. If a, b ∈ P1, then a ≤P1 b if and only if σ(a) ≤P2 σ(b).

We call τ an inverse of σ. When σ is a poset isomorphism we say that P1 and P2 are isomorphic,
and we write P1

∼= P2.

Definition 2.1.12 (Totally Ordered Sets). Suppose that we have a poset P = (S,O). We say
that O is a total order on S if for all a, b ∈ S, we have a ≤ b or b ≤ a. If O is a total order then
we call P a totally ordered set or toset for brevity.

Remark 2.1.13. All tosets considered in this paper will be isomorphic to [n] with the standard
order, where n ∈ N ∪ {∞}.
Definition 2.1.14 (Indices, Elements and Intervals). Let T be a toset. Then there is a bijective
function σ : T → [n] such that for any a, b ∈ T we have a ≤ b iff σ(a) ≤ σ(b). For any x, y ∈ T
with x ≤ y and any p, q ∈ [n] with p ≤ q we define:

1. The index of x, T (x) = σ(x).

2. The element of p, T −1(p) = σ−1(p).

3. The interval between x and y,

T [x, y] = {a ∈ T
∣∣ x ≤ a ≤ y},

T [x, y) = {a ∈ T
∣∣ x ≤ a < y}.

4. The interval between p and q,

T [p, q] = T [T −1(p),T −1(q)],

T [p, q) = T [T −1(p),T −1(q)).

We call T [q] = T [1, q] the initial segment of size q in T . If the total order of T is called O, we
call T [q] the initial segment of size q of O. For a finite set A ⊆ T we will often write T [A] to
mean T [|A|].
Proposition 2.1.15 (Decomposition of Multiset Latices). Suppose that d ∈ N with d ≥ 1 Consider
tosets T1, . . . ,Td and put T = T1 × · · · × Td. One has,

T ∼= M[d](|T1|, . . . , |Td|),
where the isomorphism sends (x1, . . . , xd) ∈ T to (T (x1)− 1, . . . ,T (xd)− 1).

Definition 2.1.16 (Cube Diagrams). Suppose that T1, . . . ,Td are tosets and put T = T1×· · ·×Td,
where d ∈ N is nonzero. Take x = (x1, . . . , xd) ∈ T . Then we can consider (T1(x1)−1, . . . ,Td(xd)−
1) ∈ Rd. For the point (T1(x1)− 1, . . . ,Td(xd)− 1) we consider the upwards cube of side length 1
in Rd, with lower left corner at the given point,

d∏
i=1

[Ti(xi),Ti(xi) + 1].

Thus, for each x = (x1, . . . , xd) ∈ T there is a unique upwards cube in Rd. For a set A ⊆ T we
call the collection of all upwards cubes from elements in A the cube diagram of A in T .
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T1

T2

(a) ∅.
T1

T2

(b) {(0, 0), (0, 1), (1, 0)}.
T1

T2

(c) {(0, 5), (0, 6), (3, 0)}.
T1

T2

(d) M[d](4, 7).

Figure 2.1.1: Cube diagrams for some subsets in M[d](4, 7).

Example 2.1.17. Some cube diagrams of some sets in M[2](4, 7) are shown in Figure 2.1.1. Some
cube diagrams of sets in M[3](5, 5, 5) are shown in Figure 2.1.2.

Example 2.1.18. M[d](ℓ1, . . . , ℓd) has a cube diagram given by all the boxes in the [0, ℓ1]× · · · ×
[0, ℓd] ∈ Rd hyperrectangle in Rd.

Definition 2.1.19 (Lexicographic Order). Suppose that we have tosets T1, . . . ,Td for d ∈ N with
d ≥ 1. Consider T = T1 × · · · × Td and x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ T . We define
the lexicographic order on T , LT to be a total order on T , such that x <LT

y iff for some
i ∈ {1, . . . , d − 1} we have x1 = y1, . . . , xi = yi and xi+1 <Ti+1

yi+1. We abuse notation and treat
T as its ground set, and define the toset TL = (T ,LT ).

Example 2.1.20. A visualization of lexicographic order in M[2](3, 4) can be seen in Figure 2.1.3.
Notice how we fill up the space column by column.

Note that any multiset lattice is a poset given by the standard partial order on the product
of tosets (Proposition 2.1.15). Lexicographic orders are total orders on multiset lattices. We will
often consider a partially ordered set equipped with another order (typically a total order) on its
elements which is different from the partial order. In the case of multiset lattices and lexicographic
orders we have that the total order is an extension of the partial order, but we will not require this
in general. This observation leads us to the following definition.

Definition 2.1.21 (n-posets). For a positive integer n, an n-poset is a tuple P = (S,O1, . . . ,On),
where S is a set and for all i ∈ [n] we have that Oi is a partial order on S.

Definition 2.1.22 (Symmetric Group). For d ∈ N with d ≥ 1, by Sd we denote the set of all
permutations on [d].

Definition 2.1.23 (Domination Order). Suppose that d ∈ N with d ≥ 1 and consider tosets
T1, . . . ,Td. Also, put T = T1 × · · · × Td. For any π ∈ Sd we define Dπ, the domination order
induced from π on T , such that for any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ T we have

x ≤Dπ y iff (xπ(1), . . . , xπ(d)) ≤TL (yπ(1), . . . , yπ(d)).

Then we define the toset Tπ = (T ,Dπ).
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T1

T2

T3

Figure 2.1.2: Cube diagrams of some sets in M[3](5, 5, 5).
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Figure 2.1.3: Lexicographic order in M[2](3, 4).

Remark 2.1.24. The lexicographic order on a product of tosets is a domination order. It is the
domination order induced by the identity permutation. Using the notation developed so far, the
statement in the previous sentence becomes TL = Tid[d] .

Domination orders are often employed. The most common one of these orders, other than the
lexicographic one, is the colexicographic order.

Definition 2.1.25 (Colexicographic Order). Suppose that d ∈ N with d ≥ 1 and consider tosets
T1, . . . ,Td Also, put T = T1× · · ·×Td. Let π ∈ Sd be the permutation such that π(i) = d− i+1
for all i ∈ {1, . . . , d}. The colexicographic order CT on T is defined to be the domination order
Dπ. We also write TC for Tπ. Another way to view the colexicographic order is to take any
x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ T and define x <CT

y iff for some i ∈ {2, . . . , d + 1} we have
xd = yd, . . . , xi = yi and xi−1 <Ti+1

yi−1.

Example 2.1.26. A visualization of colexicographic order in M[3](3, 3, 3) can be seen in Figure
2.1.4.

Definition 2.1.27 (Levels). Suppose that P is a ranked poset with rank function r. For i ∈ N the
i-th level of P is the set of all elements of rank i. This set will be denoted by Lvli,r = r−1({i}).
We will often just write Lvli,P when the rank function is clear, and Lvli when the poset is clear as
well.

Example 2.1.28. The levels of M[d](3, 3, 3) can be seen in Figure 2.1.5.

Definition 2.1.29 (Shadows). Suppose that P is a poset and a, b ∈ P. We say that b is a lower
shadow point of a iff a covers b, and we say that b is an upper shadow point of a iff b covers a. By
∆P(a) and

∆

P(a) we denote the set of all lower shadow points of a in P and the set of all upper
shadow points of a in P respectively. Similarly, for any A ⊆ P we define

∆P(A) =
⋃
a∈A

∆P(a) and

∆

P(A) =
⋃
a∈A

∆

P(a).

The subscript P will often be omitted.
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. . .

Figure 2.1.4: Colexicographic order in M[3](3, 3, 3).

(a) Rank 0 elements. (b) Rank 1 elements. (c) Rank 2 elements. (d) Rank 3 elements.

(e) Rank 4 elements. (f) Rank 5 elements. (g) Rank 6 elements.

Figure 2.1.5: The levels of M[3](3, 3, 3).
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Figure 2.1.6: The dual of the lexicographic order restricted to Lvl2 of M[3](3, 3, 3).

Example 2.1.30. In any multiset lattice M , for all i ∈ [r(M )] we have that ∆(Lvli) = Lvli−1

and

∆

(Lvli) = Lvli+1. This can be observed on Figure 2.1.5 for M[d](3, 3, 3).

Definition 2.1.31 (Dual of a Poset). For an n-poset P = (S,O1, . . . ,On) we define the dual of
P to be the n-poset P∗ = (S,O∗

1, . . . ,O∗
n), where for any a, b ∈ S and any i ∈ [n] we have a ≤O∗

i
b

iff b ≤Oi a.

Proposition 2.1.32 (Properties of Duals). For posets P,P1, . . . ,Pd and A ⊆ P we have:

1. (P1 × · · · × Pd)
∗ = P∗

1 × · · · × P∗
d .

2. ∆P(A) =

∆

P∗(A).

3.

∆

P(A) = ∆P∗(A).

Definition 2.1.33 (Restricted Orders and Subposets). Suppose that P = (S,O) is a poset and
consider any A ⊆ S. We denote the restriction of O to A by O|A. Furthermore we call (A,O|A) a
subposet. A subposet of an n-poset is just a restriction with respect to all partial orders.

Example 2.1.34. The dual of the lexicographic order restricted to Lvl2 of M[3](3, 3, 3) can be seen
in Figure 2.1.6.

Definition 2.1.35. Suppose that P is ranked. Then we define the ranked subposet up to rank n
of P by

P≤n =
n⋃

i=0

Lvli .

The following definition allows us to talk about different dimensional structures in a multiset
lattice.
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(a) (M[2](5, 5)){2}(2). (b) (M[3](2, 3, 5)){2,3}(0). (c) (M[3](3, 3, 3)){1}((1, 1)).

Figure 2.1.7: Some subproducts of multiset lattices.

Definition 2.1.36 (Subproducts). Suppose that d ≥ 1 and we have tosets T1, . . . ,Td, and put
T = T1 × · · · ×Td. For a set of coordinates S = {p1 < · · · < pk} ⊆ [d] we define the subproduct of
T under S by

TS = Tp1 × · · · × Tpk ,

where T∅ = ∅. We say that TS has dimension k. Let S = [d] \S and we can write S = {q1 < · · · <
qd−k}. For x = (xq1 , . . . , xqd−k

) ∈ TS we define the subproduct at x under S of T by

TS(x) = {(y1, . . . , yd) ∈ T
∣∣ ya = xa for all a ∈ S}.

Example 2.1.37. Some products can be seen in Figure 2.1.7.

Definition 2.1.38 (Hasse Graph of a Poset). The Hasse graph of a poset P is Hasse(P) = (V,E),
where V = P and two vertices are connected by an edge if one is in the shadow of the other.

2.2 Macaulay Posets

Macaulay posets are posets for which similar results to the famous Kruskal-Katona Theorem hold
[36, 37, 54]. They have been extensively studied in extremal combinatorics and entire chapters have
been dedicated to them in textbooks [25, 31].

Definition 2.2.1 (Macaulay Posets). Suppose that we have a 2-poset T = (S,O1,O2). Further-
more, suppose that O2 is a total order and P = (S,O1) is a ranked poset such that all the levels
are finite. Then we can talk about the levels of P, and restrict the order O2 on Lvli for each
i ∈ [r(P ) + 1]0, thus creating a totally ordered set out of each level of P. This in turn means that
we can talk about initial segments in each level of P, and write Lvli[q] to mean the initial segment
of size q of the i-th level of P under the order O2.
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We say that T is Macaulay if for any i ∈ [r(P)] and any A ⊆ Lvli we have

∆P(Lvli[A]) ⊆ Lvli−1[∆P(A)].

We will often say that O2 is a Macaulay order on P, or that P forms a Macaulay poset with O2.
Similarly, we will often write (P,O2) is Macaulay. Notation will sometimes be abused and we will
treat T as the ranked poset P. For example, we will write r(T ) to mean r(P).

Macaulay posets are often discussed in an equivalent form. The following lemma has been
observed by many authors, and is Proposition 8.1.1 in [25].

Proposition 2.2.2. Suppose that P is a ranked poset and O is a total order on P. The 2-poset
(P,O) is Macaulay if and only if for each i ∈ [r(P )] and any A ⊆ Lvli we have:

1. (Nestedness) Initial segments have the smallest shadows,

|∆P(Lvli[A])| ≤ |∆P(A)|.

2. (Continuity) The shadow of an initial segment is an initial segment,

∆P(Lvli[A]) = Lvli−1[∆P(Lvli[A])].

We make another useful observation concerning Macaulay posets. In algebraic terms, the fol-
lowing lemma says that Macaulay posets satisfy a direct limit property.

Proposition 2.2.3. Suppose that for each i ∈ N we have a Macaulay poset Ti. Furthermore, for
any i ∈ N suppose that Ti is a subposet of Ti+1 with respect to both orders, the rank function of Ti

is a restriction of the rank function of Ti+1, and

i⋃
a=0

Ta

is finite. Then

T =
∞⋃
i=0

Ti

is Macaulay.

Proof. Definition 2.2.1 is based on a property for each specific level. Since we have an ascending
chain of subposets the claim follows immediately.

The central idea of using Macaulay posets together with Hilbert functions rests on an observation
made by Bezrukov concerning the duals of Macaulay posets. A proof of the following lemma can
be found in [25] Proposition 8.1.2.

Lemma 2.2.4 (Bezrukov’s Dual Lemma [3] 1994). Suppose that P is a ranked poset with r(P ) <
∞, and that O is a total order on P. We consider the 2-poset T = (P,O). Then T is Macaulay
iff T ∗ is Macaulay.

In [3] was working on general isoperimetric problems. The form of Lemma 2.2.4 given above
appears in [25]. If r(P) = ∞ then P∗ is not ranked, so we can’t talk about P∗ being Macaulay.
However, we can still extract a lot of information about P∗ if we know that P is Macaulay.
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Lemma 2.2.5. Suppose that T = (P,O), where P is a ranked poset, O is a total order on P,
and every level is finite. The following are equivalent:

1. T is Macaulay.

2. For every n ∈ N T≤n is Macaulay.

3. For any i ∈ [n]0 and any A ⊆ Lvli,P we have

∆

P(Lvl∗i,P [A]) ⊆ Lvl∗i+1,P [

∆

P(A)],

where Lvl∗i,P means to take the i-th level of P , impose the total order induced by O, and then
take the dual.

4. For any i ∈ [n]0 and any A ⊆ Lvli,P we have

| ∆

P(Lvl∗i,P [A])| ≤ | ∆

P(A)|,

∆

P(Lvl∗i,P [A]) = Lvl∗i+1,P [

∆

P(Lvl∗i,P [A])].

Proof. We have that (1) implies (2) by Definition 2.2.1. Proposition 2.2.3 gives us that (2) implies
(1). For all n ∈ N, r(T≤n) < ∞ we have that T ∗

≤n is Macaulay by Bezrukov’s Dual Lemma 2.2.4.
Thus, (2) is equivalent to (3) by Proposition 2.1.32 Finally, (3) is equivalent to (4) by Lemma 2.2.2
and Proposition 2.1.32.

The oldest result on Macaulay posets is due to Macaulay.

Theorem 2.2.6 (Macaulay (the dual problem was considered) [46] 1927). If M = M[d](∞, . . . ,∞)
then (M ,LM ) is Macaulay.

A famous result concerning Macaulay posets is the Kruskal-Katona Theorem. This result first
appeared in print in 1959 [54] by Schützenberger, but the proof is incomplete. Later it was proved
by Kruskal in 1963 [37], and independently discovered by Katona in 1966 [36]. It is a special case
of Harper’s vertex isoperimetric inequality from 1966 [30].

Theorem 2.2.7. If M = M[d](2, . . . , 2) then (M ,LM ) is Macaulay.

Clements and Lindström completely settled the Macaulay problem for finite multiset lattices.

Theorem 2.2.8 (Clements-Lindström [23] 1969). If M = M[d](ℓ1, . . . , ℓd) with ℓ1 ≤ ℓ2 ≤ · · · ≤
ℓd <∞ then (M ,LM ) is Macaulay.

We must remark that the above three classical results of Macaulay posets were originally not
stated like above. Macaulay worked with monomials in K[x1, . . . , xd]. Clements and Lindström
worked with upper shadows and the dual of the lexicographic order. There are many proofs of the
Kruskal-Katona Theorem using different techniques. Many authors did not use the lexicographic
order, but some domination order, which in a lot of cases was the colexicographic order.

Notice that Macaulay’s Theorem follows from the Clements-Lindström Theorem by using Propo-
sition 2.2.3. Similarly, we get the following corollary.

Corollary 2.2.9. If M is any multiset lattice then M forms a Macaulay poset with some domi-
nation order.
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2.3 The Poset of Monomials

We assume that all rings are commutative and have 1. K will always denote a field.

Definition 2.3.1 (Graded Rings). A ring R is called graded if:

1. For all i ∈ N there exists an abelian group Ri, and we have R =
⊕∞

i=0Ri as an abelian group.

2. For all x ∈ Ri and all y ∈ Rj we have that xy ∈ Ri+j .

Definition 2.3.2 (Homogeneous Elements, Components and Degrees). Suppose that R =
⊕∞

i=0Ri

is a graded ring. We say that an element x ∈ R is homogeneous if and only if there exists i ∈ N
such that x ∈ Ri. Then for any nonzero f ∈ R we can uniquely write f = f1 + · · · + fn, where
each nonzero fj belongs to some Rij . The ring elements f1, . . . , fn are called the homogeneous
components of f . For any nonzero x ∈ Ri we define the degree of x in R to be degR(x) = i.

Definition 2.3.3 (Homogeneous Ideal). An ideal I in a graded ring R is said to be homogeneous
if and only if I is generated by homogeneous elements.

Proposition 2.3.4 (Properties of Homogeneous Ideals). Suppose that R =
⊕∞

i=0Ri is a graded
ring and I is an ideal of R. The following are equivalent:

1. I is homogeneous.

2. I =
⊕∞

i=0(Ri ∩ I).

3. Let f ∈ R. One has, f ∈ I iff each of the homogeneous components of f are in I.

Definition 2.3.5 (Levels in Graded Rings). If R =
⊕∞

i=0Ri is a graded ring, then we define the
i-th level of R by Lvli,R = Ri.

Proposition 2.3.6 (Quotients of Graded Rings by Homogeneous Ideals are Graded). If R is a
graded ring and H is a homogeneous ideal of R then S = R/H is graded with

Lvli,S =
Lvli,R +H

H
.

In particular, for any homogeneous f ∈ R such that f + H is nonzero, we have degS(f + H) =
degR(f).

Definition 2.3.7 (The Standard Grading on Polynomial Rings). The standard grading on R =
K[x1, . . . , xd] is given by making Lvli,R be all homogeneous polynomials of degree i. Then for
a homogeneous ideal H ⊆ R we define the standard grading on R/H to be given given by the
standard grading on R and Proposition 2.3.6.

For the rest of this section let R = K[x1, . . . , xd] and S = R/H, where H is a homogeneous
ideal of R. Furthermore, we assume that H ̸= R, which means 1 ̸∈ H.

Definition 2.3.8 (Monomials and Monomial Ideals). A monomial of S is a nonzero element that
has the form xp11 · · ·xpdd + H, where p1, . . . , pd ∈ N. An ideal H ⊆ S is called monomial if it is
generated by monomials.

Remark 2.3.9. Every monomial ideal in S is a homogeneous ideal.
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Definition 2.3.10 (Set of Monomials and Monomial Division). The set of all monomials of S will
be denoted by MS . For f, g ∈ MS we say f |g iff there exists a ∈ MS such that g = af . We say
that f divides g.

Proposition 2.3.11. Monomial division is a partial order on MS.

Proof. If q ∈ MS then q|q, since q = (1 +H)q, and note that 1 +H ∈ MS because H ̸= R. Thus,
monomial division is reflexive.

Next, we handle antisymmetry. So, suppose that p, q ∈ MS with p|q and q|p. Then there
exist a, b ∈ MS such that q = ap and p = bq. Hence, deg(q) = deg(a) + deg(p) and deg(p) =
deg(b) + deg(q). Thus, deg(q) = deg(a) + deg(b) + deg(q), which gives 0 = deg(a) + deg(b). As
deg(a), deg(b) ≥ 0 we must have that deg(a) = deg(b) = 0. However, there is only one monomial
of degree 0, which forces a = b = 1 +H. Therefore, p = q as desired.

We are left to handle transitivity. Suppose that p, q,m ∈ MS such that p|q and q|m. Then
there are a, b ∈ MS such that q = ap and m = bq. Thus, m = (ba)p. Well, ba ̸= 0, since otherwise
m = 0. Hence, ba ∈MS , and we have that p|m. So, monomial division is transitive.

Therefore, monomial division is a partial order on MS .

Definition 2.3.12 (Poset of Monomials). Considering Proposition 2.3.11, monomial division will
be called the monomial partial order on S from now on. The poset of monomials of S is defined
to be the set of all monomials together with the monomial partial order, and we denote by MS .
Furthermore, we define the rank of an element of MS to be its degree, and this makes MS into a
ranked poset.

One might think that this partial order is complicated, since it is defined in terms of division
in an arbitrary quotient of a polynomial ring by a homogeneous ideal. However, note that we only
defined division among monomials. This gives us a very concrete statement about the partial order,
even when the ideal H is not monomial.

Lemma 2.3.13. Suppose that S = K[x1, . . . , xd]/H, where H is a homogeneous ideal, and let
m1,m2 ∈ MS. We have that m1|m2 iff there are p1, . . . , pd, q1, . . . , qd ∈ N such that

1. m1 = xp11 · · ·xpdd +H.

2. m2 = xq11 · · ·xqdd +H.

3. p1 ≤ q1, . . . , pd ≤ qd.

Proof. The ⇐= direction follows from the definition of monomial division in K[x1, . . . , xd]. So,
suppose that m1|m2 and we prove the =⇒ direction. Then there exists a ∈ MS such that
m2 = am1. Thus,

m1 = xp11 · · ·xpdd +H,

a = xt11 · · ·xtdd +H,

for some p1, . . . , pd, t1, . . . , td ∈ N. Then m2 = xp1+t1
1 · · ·xpd+td

d +H, and the claim holds by setting
q1 = p1 + t1, . . . , qd = pd + td.

The poset of monomials of a ring has many nice properties. One crucial property is that its
shadow functions corresponds to multiplying or dividing by the variables. That is, the partial
order is compatible with the multiplication of the ring. A rigorous statement of this observation is
given for the upper shadows in the next lemma, and we leave the downwards shadow version as an
exercise.
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Lemma 2.3.14 (Upper Shadow in The Poset of Monomials). If A ⊆ MS then

∆

(A) =

d⋃
j=1

{m(xj +H)
∣∣ m ∈ A and m(xj +H) ̸= 0}.

Proof. We have that ⊇ follows from the definition of MS . So, we prove ⊆. Let p ∈ ∆

(A). Then
there exists m ∈ A such that m|p and deg(m) + 1 = deg(p). Hence, p = am for some a ∈ MS .
However, deg(m) + 1 = deg(p) forces deg(a) = 1. Thus, a = xj + H for some j ∈ [d]. Therefore
the claim holds.

We are going to make an even stronger statement about the upper shadow function in Lemma
2.3.18, but before that we need a few more definitions.

Definition 2.3.15 (Graded Vector Spaces). A K-subspace V of S is said to be graded if for every
i ∈ N there is a K-subspace Vi of Lvli,S such that

V =

∞⊕
i=0

Vi.

We call Vi the i-th level of V and write Lvli,V = Vi.

Proposition 2.3.16. If I is a homogeneous ideal of S then I is a graded vector space.

Proof. Follows from Proposition 2.3.4.

Definition 2.3.17 (Monomial Spaces). A graded vector space is called a monomial space if it has
a basis consisting of monomials.

Lemma 2.3.18. A monomial space V ⊆ S is an ideal iff for all i ∈ N we have

∆

(Lvli,V ∩MS) ⊆
Lvli+1,V ∩MS.

Proof. The forward direction follows by Lemma 2.3.14. So, suppose that for all i ∈ N we have

∆

(Lvli,V ∩MS) ⊆ Lvli+1,V ∩MS . Then Lemma 2.3.14 implies that for every m ∈ Lvli,V ∩MS and
for every j ∈ [d] we have that m(xj +H) ∈ Lvli+1,V ∩MS , since V being a group implies 0 ∈ V .
Therefore, with a few induction arguments we get that V is an ideal.

Definition 2.3.19. For an arbitrary poset A ⊆ P we say that A is a downset/ideal iff whenever
x ∈ A and y ≤ x then y ∈ A. Similarly, we say that A is an upset/ideal iff whenever x ∈ A and
x ≤ y then y ∈ A.

In general the poset of monomials of a ring can get very complicated. However, using the results
so far, one can make some useful observations that help us understand things in the general setting.
First, notice that MR∩H is an upset. Second, if we have a monomial m ∈ H then m+H = 0 ∈ S.
Thus, Lemma 2.3.14 and Lemma 2.3.18 say that if we have a monomial m ∈ H, then the upset
defined by m in MR is deleted in MS . This deletion operation can be seen in Figure 2.3.1a. Using
this we can conclude the isomorphism in Example 2.3.21.

Definition 2.3.20 (Infinite Variable Powers). For i ∈ [d] we define x∞i = 0 ∈ R.

Example 2.3.21. If H = (xp11 , . . . , x
pd
d ) for some p1, . . . , pd ∈ N∪{∞} then MS

∼= M[d](p1, . . . , pd).

Another useful observation from these ideas is that domination orders on MS are well-defined.
Something even stronger is true.
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(a) Cube diagram of MS when H = (Lvl3)
and d = 3.

1 +H

x1 +H x2 +H

x21 +H x1x2 +H = x22 +H

x31 +H x21x2 +H = x1x
2
2 +H = x32 +H

(b) Hasse Graph of MS when H = (Lvl4)+(x1x2−x22) and
d = 2.

Figure 2.3.1: Posets of monomials for different H.

Proposition 2.3.22 (Monomial Quotients Produce Subposets). If H is a monomial ideal then
MS is isomorphic to a subposet of MR. In particular, if O is a total order on MR, then there
exists a well-defined order on MS induced from the isomorphism and O.

Proof. Since H is a monomial ideal, the function MS → MR that sends xp11 · · ·xpdd +H to xp11 · · ·xpdd
is injective, whence we get that MS is isomorphic to a subposet of MR.

Another useful connection to make is to understand what happens when we have binomials
m1 −m2 ∈ H, where m1,m2 ∈ MR. Well, in this case we have (m1 −m2) +H = 0 ∈ S, whence
m1 +H = m2 +H. That is, we consider the two monomials m1 and m2 in MR and glue them to
transition to MS . This gluing operation can be seen in Figure 2.3.1b

Definition 2.3.23 (Posets Representable by Rings). We say that a poset P is representable by a
ring iff there exists a ring S such that P ∼= MS .

By Example 2.3.21 we have that any multiset lattice is representable by a ring.

2.4 Initial Monomial Vector Spaces and Ideals

In this section R = K[x1, . . . , xd] and S = R/H, where H is a homogeneous ideal of R and K is a
field. Furthermore, we assume that H ̸= R, which means 1 ̸∈ H.

Definition 2.4.1 (Hilbert Functions). For a graded subspace V of S we define the Hilbert function
of V to be HilbV : N → N such that for all i ∈ N we have

HilbV (i) = dimK Lvli,V .

Definition 2.4.2 (Initial Monomial Sets, Vector Spaces and Ideals). Suppose that O is a total
order on MS . Note that Lvli,R = SpanK(Lvli,MR

), whence Lvli,S = SpanK(Lvli,MS
). Thus, each

Lvli,S has a basis consisting of monomials. Let Bi = {m1,i, . . . ,mni,i} be a basis of monomials for
Lvli,S . Then for any nonzero f ∈ Lvli,S we can uniquely write f = af,1m1,i + · · ·+ af,ni

mni,i, such
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that af,1, . . . , af,ni
∈ K, m1,i, . . . ,mni,i ∈ MS and m1,i ≤O · · · ≤O mni,i. The initial monomial of

f under O and Bi is defined to be the smallest mj,i (with respect to O) such that af,j ̸= 0, and we
denote it by imO,Bi(f). Next, let B = (Bi)

∞
i=0, and we call B a leveled monomial basis of S. For a

homogeneous ideal I ⊆ S we define:

1. The initial monomial set of degree i ∈ N under O and Bi,

IMSO,Bi(i, I) = {imO,Bi(f)
∣∣ f ∈ Lvli,I}.

2. The initial monomial set under O and B,

IMSO,B(I) =

∞⋃
i=0

IMSO,Bi(i, I).

3. The initial monomial vector space O and B,

IMVO,B(I) =

∞⊕
i=0

SpanK(IMSO,Bi(i, I)).

4. The initial monomial ideal under O and B, which is the ideal generated by IMSO,B,

IMIO,B(I) = (IMSO,B) .

We will often omit indices as the total order and leveled monomial basis will be fixed.

Lemma 2.4.3 (General Hilbert Function Equalities and Inequalities). Suppose that O is a total
order on S and B is a leveled monomial basis for S. If I ⊆ S is a homogeneous ideal then
HilbI = HilbIMV(I) ≤ HilbIMI(I).

Proof. The inequality follows from the Standard Grading on S and the relation IMV(I) ⊆ IMI(I).
We deal with the equality next.

For each i ∈ N there exists a basis of homogeneous polynomials Ci = {f1,i, . . . , fki,i} for Lvli,I .
Then for each i ∈ N and f ∈ Ci we can write f = af,1m1+· · ·+af,ni

mni , where Bi = {m1, . . . ,mni}
and m1 <O · · · <O mni .

Then we form the matrix Mi, such that its rows are the coefficients of the homogeneous poly-
nomials in Ci with respect to Bi and O. For 1 ≤ r ≤ ki and 1 ≤ c ≤ ni we define

Mi = (afr,i,c)r,c

LetM ′
i be the row reduced echelon form ofMi. Thus, the row space ofMi andM

′
i is the same, and

the nonzero rows of M ′
i are a basis for the row space of Mi, which is isomorphic to Ci. Hence, M

′
i

does not have any zero rows, since all the rows of Mi are a basis for SpanK(Ci) = Lvli,I . Let f ′j,i
be the homogeneous polynomial corresponding to the j-th row of M ′

i and put C ′
i = {f ′1,i, . . . , f ′ki,i}.

Then C ′
i ⊆ Lvli,I and we define B′

i = {im(f ′1,i), . . . , im(f ′ki,i)} ⊆ Lvli,IMV(I).
First, note that |B′

i| = ki, since the leading entries of the rows inM ′
i are the only nonzero entries

in their own columns. Next, B′
i is linearly independent, sinceB′

i ⊆ Bi andBi is linearly independent.
We show that SpanK(B′

i) = Lvli,IMV(I), whence B
′
i is a basis for Lvli,IMV(I). The containment ⊆

follows right away, since B′
i ⊆ Lvli,IMV(I). Thus, we just need to show IMS(i, I) ⊆ SpanK(B′

i).
So, let m ∈ IMS(i, I). Then there exists f ∈ Lvli,I such that m = im(f). Thus, we can write
f = b1f

′
1,i + · · · bkif ′ki,i. Let j ∈ [ki] be the smallest integer such that bj ̸= 0. Hence, m = im(f ′j,i)
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because Bi is linearly independent and the leading entries of the rows in M ′
i are the only nonzero

entries in their own columns. Therefore, SpanK(B′
i) = Lvli,IMV(I) and B

′
i is a basis for Lvli,IMV(I).

Finally,

HilbI(i) = |Ci| = |C ′
i| = |B′

i| = HilbIMV(I)(i).

Example 2.4.4 shows that the inequality in Lemma 2.4.3 can be strict.

Example 2.4.4. Consider S = K[x, y]/(0). We define a total order O on MS that totally orders
by degree first, then the monomials of degree 1 are ordered based on lexicographic order L, and
finally the monomials of degree other than 1 are ordered based on the colexicographic order C.
More formally, m1 ≤O m2 if and only if

1. deg(m1) < deg(m2),

2. or deg(m1) = deg(m2) and

(a) if deg(m1) = deg(m2) = 1 then m1 ≤L m2.

(b) if deg(m1) = deg(m2) ̸= 1 then m1 ≤C m2.

Now consider the homogeneous ideal I = (x + y). Then x2 + xy ∈ I and xy + y2 ∈ I and let
BI = {x2 + xy, xy + y2}. Suppose that f ∈ I is homogeneous and deg(f) = 2. Then f = g(x+ y)
for some homogeneous g ∈ S with deg(g) = 1. Thus, g = ax + by for some a, b ∈ K. Hence,
f ∈ SpanK(BI). Therefore, HilbI(2) = 2.

Next, we consider IMI(I) with the order O, and note that there is a unique leveled monomial
basis of S. Well, y ∈ IMI(I) because x+ y ∈ I, whence y2, xy ∈ IMI(I). Also, x2 + xy ∈ I, whence
x2 ∈ IMI(I). So, HilbIMI(I)(2) = 3.

Therefore, HilbI(2) = HilbIMV(I)(2) < HilbIMI(I)(2). This situation occurs because O is not
monomial order (Definition 2.4.6).

We would like to have HilbI = HilbIMI(I). The following lemma tells us when this happens.

Lemma 2.4.5 (General Hilbert Function Equalities). Suppose that O is a total order on S and B
is a leveled monomial basis for S. Furthermore, let I ⊆ S be a homogeneous ideal of S. IMV(I) is
an ideal iff IMV(I) = IMI(I) iff HilbI = HilbIMV(I) = HilbIMI(I).

Proof. First, we handle the forward directions. If IMV(I) is an ideal then IMV(I) = IMI(I), since
IMV(I) ⊆ IMI(I) and IMV(I) contains the generating set of IMI(I). If IMV(I) = IMI(I) then
HilbI = HilbIMV(I) = HilbIMI(I) from Lemma 2.4.3

The backwards directions holds because dimK Lvli,IMV(I) = dimK Lvli,IMI(I) and Lvli,IMV(I) ⊆
Lvli,IMI(I) implies Lvli,IMV(I) = Lvli,IMI(I). Thus, IMV(I) = IMI(I). Furthermore, IMV(I) =
IMI(I) implies that IMV(I) is an ideal.

When assumed, the following two properties will force IMV(I) to be an ideal.

Definition 2.4.6 (Monomial Order). A total orderO on MS is called amonomial order if whenever
we have m1,m2 ∈ MS such that m1 < m2, and we have m ∈ MS such that mm1,mm2 ∈ MS ,
then mm1 < mm2.
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Monomial orders are very common. For example, any domination order on MR is a monomial
order. Considering Proposition 2.3.22 we see that this implies that there is always a monomial
order on MS when H is a monomial ideal. The main property of monomial orders that we are
interested in is their existence. In all of our results, the specific monomial order does not matter and
is independent of the other properties. When a monomial order exists we can reduce homogeneous
ideals to monomial ideals by using Theorem 2.4.8.

Definition 2.4.7 (Level Linear Independence). We say that S is level linearly independent if for
all i ∈ N we have that Lvli,MS

is linearly independent. We will often say that MS is level linearly
independent and we just mean that S is level linearly independent.

Definition 2.4.7 is important to the proof of the Macaulay Correspondence Theorem 2.6.3. As
the following result shows, it can also be used to preserve the Hilbert function when constructing
initial monomial ideals.

Theorem 2.4.8 (Reducing Homogeneous Ideals to Monomial Ideals). Suppose that O is a mono-
mial order on MS and let S be level linearly independent. If I is a homogeneous ideal of S then
HilbI = HilbIMV(I) = HilbIMI(I).

Proof. Note that there is a unique leveled monomial basis of S, since S is level linearly independent.
Because of Lemma 2.4.5 we only need to show that IMV(I) is an ideal. Thus, for any g ∈ S and any
m ∈ IMV (I) we need to show that gm ∈ IMV(I). Well, g is a finite sum of homogeneous elements,
each of which is a finite sum of scalars of monomials in S. Also, m is a finite sum of homogeneous
elements, each of which is a finite sum of initial monomials, and each of the initial monomials are
coming from a homogeneous element in I. Hence, gm is a sum, such that each term in the sum
is a product between a monomial and an initial monomial of some homogeneous element of I. We
prove the claim when g ∈ MS and m ∈ IMS(I), whence the general case will follow immediately
afterwards.

So, we assume that g ∈ MS and m ∈ IMS(I) and show that gm ∈ IMV(I). Also, assume that
gm ̸= 0, since 0 ∈ IMV(I). We can write m = im(f) for some homogeneous f ∈ I. Then we have
f = a1m1+ · · ·+anmn, where a1, . . . , an ∈ K \{0}, the terms m1, . . . ,mn are monomials of deg(f)
in S, and we have m1 < · · · < mn. Of course, m = im(f) = m1. Since I is an ideal we have gf ∈ I,
and since g and f are homogeneous we have that gf is homogeneous.

Well,

gf = a1gm1 + · · ·+ angmn.

Note that a1gm1 ̸= 0, otherwise gm = gm1 = 0 (a1 ̸= 0) a contradiction. Thus, gf ̸= 0, since
S is level linearly independent. So, im(gf) ∈ IMV(I). We show that im(gf) = g im(f) = gm =
gm1. First, for each j ∈ [n] such that gmj ̸= 0 we have that gmj is a monomial in the basis of
degree deg(gf) monomials, since S is level linearly independent. That is, the expression (after the
appropriate ordering) given above for gf is used in the construction of IMS(I), after eliminating 0
terms. Furthermore, for any j1, j2 ∈ [n] such that gmj1 , gmj2 ̸= 0 we have gmj1 < gmj2 , since O is
a monomial order. All of this together gives im(gf) = g im(f) = gm = gm1.

Therefore, the proof is complete.

Corollary 2.4.9. Suppose that H is a monomial ideal. If I is a homogeneous ideal of S then
HilbI = HilbIMV(I) = HilbIMI(I).

Proof. The lexicographic order on MR is a monomial order, whence Proposition 2.3.22 gives us a
monomial order on MS . Since H is a monomial ideal we have that S is level linearly independent.
Therefore, the claim holds by Theorem 2.4.8.
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2.5 Macaulay Rings

Unless otherwise stated S = K[x1, . . . , xd]/H, where K is a field and H is a homogeneous ideal of
R = K[x1, . . . , xd]. Furthermore, we assume that H ̸= R, which means 1 ̸∈ H.

Definition 2.5.1 (Initial Segment Spaces). Suppose that V is a graded vector subspace of S and
let O be a total order on MS . We define the initial O-segment space of V by

O∗[V ] =

∞⊕
i=0

SpanK(Lvl∗i,MS
[dimK Lvli,V ]).

The Macaulay Correspondence Theorem 2.6.3 gives us conditions for when O∗[V ] is an ideal.

Remark 2.5.2. For a homogeneous ideal I, L∗
MS

[I] is known as a lexicographic ideal or lex ideal
in the literature, when it holds that L∗

MS
[I] is an ideal.

Example 2.5.3. In general we have HilbV ≥ HilbO∗[V ]. We could have HilbV (i) > HilbO∗[V ](i)
for some i, when Lvl∗i,MS

[dimK Lvli,V ] is not linearly independent. Take R = [x, y, z] with d = 3,
H = (x2 + xy − xz) and S = R/H. Then we consider the ideal I = (z2 +H, yz +H, y2 +H).

First, note that MR and MS are isomorphic because R is an integral domain, whence there is
a notion of lexicographic order on MS . Second, notice that {z2 + H, yz + H, y2 + H} is linearly
independent. Hence, HilbI(2) = 3.

However, {x2+H,xy+H,xz+H} is not linearly independent, since (x2+H)+(xy+H) = xz+H.
Also, L∗[I] ∩ MS = {x2 +H,xy +H,xz +H}. Thus, HilbL∗[I](2) = 2.

Therefore, HilbI(2) > HilbL∗[I](2) and HilbI ̸= HilbL∗[I].

Example 2.5.3 reinforces the importance of Definition 2.4.7 for preserving Hilbert functions.

Lemma 2.5.4. If S is level linearly independent and O is a total order on MS then for any graded
vector subspace V of S we have

HilbV = HilbO∗[V ]

Proof. Follows from Definition 2.5.1 and Definition 2.4.7.

Lemma 2.5.5. If S is level linearly independent and O is a total order on MS, then for any graded
vector subspace V of S and all i ∈ N we have

Lvl∗i,MS
[dimK Lvli,V ] = Lvli,O∗[V ] ∩MS .

Proof. One has, ⊆ right away from Definition 2.5.1.
So, let m ∈ Lvli,O∗(V ) ∩MS . Then

m ∈ SpanK(Lvl∗i,MS
[dimK Lvli,V ]) ∩ MS .

Thus, m is a linear combination of elements of Lvl∗i,MS
[dimK Lvli,V ]. However, S is level linearly

independent. Hence, every linear combination of Lvl∗i,MS
[dimK Lvli,V ] that involves at least two

terms is not a monomial. Thus, we must have m ∈ Lvl∗i,MS
[dimK Lvli,V ].

Therefore, the claim holds.
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Mermin and Peeva in [48, 49] asked about conditions on H (for monomial ideals) such that for
any homogeneous ideal I of S, there exists a lexicographic ideal L of S such that HilbI = HilbL.
They called such rings S Macaulay-Lex, and H a Macaulay-Lex ideal of R. We are interested in
generalizing this problem in two directions. First, we want to allow an arbitrary order, not just the
lexicographic one. Second, we want to take quotients by homogeneous ideals, not just monomial
ideals.

Definition 2.5.6 (Macaulay Rings and Ideals). Suppose that O is a total order on MS . We say
that (S,O) is Macaulay if for every homogeneous ideal I of S we have that O∗[I] is an ideal, and
HilbI = HilbO∗[I]. If (S,O) is Macaulay then we say H is Macaulay. We will sometimes say that S
is Macaulay without specifying the total order, or say that S is Macaulay with O.

Problem 2.5.7 (The General Mermin-Peeva Problem). Find classes of Macaulay rings.

2.6 The Macaulay Correspondence Theorem

Unless otherwise stated S = K[x1, . . . , xd]/H, where K is a field and H is a homogeneous ideal of
R = K[x1, . . . , xd].

Lemma 2.6.1. Suppose that S is level linearly independent and O is a total order on MS. If
(S,O) is Macaulay then (MS ,O) is Macaulay.

Proof. First, from the definitions we have that MS is ranked and all its levels are finite. Let i ∈ N
and A ⊆ Lvli,MS

. Then let I be the ideal generated by A. Thus, O∗[I] is an ideal, since we assumed
that (S,O) is Macaulay. One has,

∆
(Lvl∗i,MS

[A]) =
∆

(Lvl∗i,MS
[dimK Lvli,I ]) (By level linear independence)

=

∆

(Lvli,O∗[I] ∩MS) (By Lemma 2.5.5)

⊆ Lvli+1,O∗[I] ∩MS (By Lemma 2.3.18)

= Lvl∗i+1,MS
[dimK Lvli+1,I ] (By Lemma 2.5.5)

= Lvl∗i+1,MS
[

∆

(A)]. (By level linear independence and definition of I)

Hence, we have

∆

(Lvl∗i,MS
[A]) ⊆ Lvl∗i+1,MS

[

∆

(A)],

for all i ∈ N. Therefore, by Lemma 2.2.5 we have that (MS ,O) is Macaulay.

Lemma 2.6.2. Suppose that S is level linearly independent and O is a total order on MS. If
M ⊆ S is a monomial ideal and (MS ,O) is Macaulay then O∗[M ] is an ideal.

Proof. For all i ∈ N one has

∆

(Lvli,O∗[M ] ∩MS) =

∆

(Lvl∗i,MS
[dimK Lvli,M ]) (By Lemma 2.5.5)

=

∆

(Lvl∗i,MS
[Lvli,M ∩MS ]) (By level linear independence)

⊆ Lvl∗i+1,MS
[

∆

(Lvli,M ∩MS)]) (By Lemma 2.2.5)

⊆ Lvl∗i+1,MS
[Lvli+1,M ∩MS ]) (Since

∆

(Lvli,M ∩MS) ⊆ Lvli+1,M ∩MS)

= Lvl∗i+1,MS
[dimK Lvli+1,M ] (By level linear independence)

= Lvli+1,O∗[M ] ∩MS . (By Lemma 2.5.5)
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Thus, we have

∆

(Lvli,O∗[M ] ∩MS) ⊆ Lvli+1,O∗[M ] ∩MS ,

for all i ∈ N. Therefore, by Lemma 2.3.18 we have that O∗[M ] is an ideal.

We can now put all the developments in the previous sections into proving the Macaulay Cor-
respondence Theorem 2.6.3.

Theorem 2.6.3 (Macaulay Correspondence Theorem). Suppose that:

1. S is level linearly independent.

2. O is a total order on MS.

3. There exists a monomial order on MS.

Then (S,O) is Macaulay if and only if (MS ,O) is Macaulay.

Proof. The forward direction follows by Lemma 2.6.1. The backwards direction is slightly more
complicated. Suppose that (MS ,O) is Macaulay and I ⊆ S is a homogeneous ideal. Well, HilbI =
HilbO∗[I] by Lemma 2.5.4. So, we just need to show that O∗[I] is an ideal.

Let B be the unique leveled monomial basis of S and O′ be a monomial order on MS . Then
Theorem 2.4.8 gives us that M = IMIO′,B(I) and I have the same Hilbert function. Note that M
is a monomial ideal. Thus, Lemma 2.6.2 implies that O∗[M ] is an ideal. However, O∗[M ] = O∗[I],
since HilbM = HilbI and the sets O∗[M ] and O∗[I] only depend on HilbM and HilbI respectively.
Hence, O∗[I] is an ideal. Therefore, (S,O) is Macaulay.

A couple remarks are in order for the proof of the Macaulay Correspondence Theorem 2.6.3.
The order O is only needed to state the result. Level linear independence is crucial for many parts
of several proofs that contributed to the final result. The existence of a monomial order on MS

is only needed to reduce a homogeneous ideal to a monomial ideal in the backwards direction.
In particular, if H was a monomial ideal, we don’t need to worry about this condition because
of Corollary 2.4.9. Furthermore, if H is a monomial ideal then it forces S to be level linearly
independent. Therefore, we have the following corollary.

Corollary 2.6.4 (Macaulay Correspondence Theorem for Monomial Quotients). Suppose that H
is a monomial ideal. Then (S,O) is Macaulay iff (MS ,O) is Macaulay.

Although the author discovered Theorem 2.6.3 independently, it should mention that a less
general version of it has been discovered before. Shakin in [56] proves the case whenH is a monomial
ideal and O = L. However, the equivalence is only with the relation ∆P(Lvli[A]) ⊆ Lvli−1[∆P(A)],
and there is no mention of Macaulay posets. Shakin’s proof does not use Bezrukov’s Dual Lemma
2.2.4 and it is different compared to the proofs given above.

Notice that we can combine Theorem 2.4.8 with Lemma 2.2.5 to obtain even more equivalences.
A weak version of this was observed by Chong in [21]. Chong used Shakin’s result and Proposition
8.1.1 in [25]. This again, limits everything to H being a monomial ideal and O = L, and again
there is no mention of Macaulay posets.

Both Shakin and Chong do not define the poset of monomials or initial segment spaces. Engel
mentions Macaulay’s Theorem 2.2.6 in [25], but does not discuss Hilbert function at all. With the
full power of Theorem 2.6.3 we can deduce many results about Macaulay rings by using the existing
theory on Macaulay posets. To end this section, we give the following corollary as simple example
of what is to come in later sections.
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Corollary 2.6.5. Let p1, . . . , pd ∈ (N ∪∞) \ {0}. If H = (xp11 , . . . , x
pd
d ) then S is Macaulay with

some domination order.

Proof. Follows from Corollary 2.2.9 and Corollary 2.6.4.

Definition 2.6.6. The rings in Corollary 2.6.5 are called Clements-Lindström rings.

2.7 Products of Posets and Rings

Results on Macaulay posets are often stated in terms of Cartesian products of other Macaulay
posets. For example, any multiset lattice is just the product of totally ordered sets (Decomposition
of Multiset Lattices 2.1.15), each of which is Macaulay with the lexicographic order. Since we will
often use results about Macaulay posets to deduce results about Hilbert functions, it is useful to
have an analog of products of posets for rings. In this section we translate the Cartesian product
operation on posets to the tensor product on rings. A very useful result concerning the product of
two vector spaces is the following lemma, and is Theorem 14.5 in [53].

Lemma 2.7.1. Suppose that U and V are vector spaces over K. If u1, . . . , un are linearly inde-
pendent vectors in U and v1, . . . , vn are arbitrary vectors in V , then in U ⊗K V we have

n∑
i=1

ui ⊗ vi = 0 =⇒ vi = 0 for all i ∈ [n].

In particular, u⊗ v = 0 iff u = 0 or v = 0.

Lemma 2.7.1is very useful when proving the poset properties of the next lemma. Parts 1-4 of
Lemma 2.7.2 are standard facts, and included for completeness.

Lemma 2.7.2. Let Rx = K[x1, . . . , xdx ], Ry = K[y1, . . . , ydy ] and consider the ring that has both
classes of variables Rxy = K[x1, . . . , xdx , y1, . . . , ydy ]. If Hx is a homogeneous ideal of Rx and Hy

is a homogeneous ideal of Ry, and we set Sx = Rx/Hx, Sy = Ry/Hy and Sxy = Rxy/(Hx +Hy),
then:

1. Sx ⊗K Sy is a ring, where the group structure comes form the definition of tensor product,
and multiplication is given by (naturally extending for sums of basic tensors)

((rx +Hx)⊗ (ry +Hy))((r
′
x +Hx)⊗ (r′y +Hy)) = (rxr

′
x +Hx)⊗ (ryr

′
y +Hy).

2. There exists a ring homomorphism σ : Sx ⊗K Sy → Sxy such that

σ((rx +Hx)⊗ (ry +Hy)) = rxry + (Hx +Hy).

3. There exists a ring homomorphism τ : Sxy → Sx ⊗K Sy such that

τ(xp11 · · ·xpdxdx
yq11 · · · yqdydy

+ (Hx +Hy)) = (xp11 · · ·xpdxdx
+Hx)⊗ (yq11 · · · yqdydy

+Hy).

4. We have that σ and τ are inverses of each other and hence we have an isomorphism of rings

Sx ⊗K Sy ∼= Sxy.
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5. If every pair of distinct monomials of the same degree in Sx is linearly independent then we
have an isomorphism of posets

MSx × MSy
∼= MSxy .

6. If MSx is level linearly independent then MSxy is level linearly independent.

7. If every pair of monomials of the same degree in Sx is linearly independent, and there exist
monomial orders on MSx and MSy , then there exists a monomial order on MSxy .

Proof. The first claim is a general result on the tensor product of algebras, see sections 6 of chapter
XVI in [38].

For the second claim we define a relation f : Sx × Sy → Sxy, such that f((rx +Hx, ry +Hy)) =
rxry + (Hx +Hy).

First, we show that f is a function. Suppose that (rx+Hx, ry +Hy) = (r′x+Hx, r
′
y +Hy) Then

r′x = rx + hx and r′y = ry + hy for some hx ∈ Hx and hy ∈ Hy. Hence,

r′xr
′
y + (Hx +Hy) = rxry + rxhy + ryhx + hxhy + (Hx +Hy) = rxry + (Hx +Hy).

Thus, f is a function.
It is easily seen that f is K-biadditive, since Rxy is a commutative ring. Thus, there is a

Z−module homomorphism σ : Sx⊗KSy → Sxy, such that σ((rx+Hx)⊗(ry+Hy)) = rxry+(Hx+Hy).
It is easily seen that σ is a ring homomorphism.

Next, we define g : MRxy → Sx ⊗K Sy, such that

g(xp11 · · ·xpdxdx
yq11 · · · yqdydy

) = (xp11 · · ·xpdxdx
+Hx)⊗ (yq11 · · · yqdydy

+Hy).

Then we let h : Rxy → Sx⊗K Sy be the K-linear extension of g. Clearly, h is a ring homomorphism.
Furthermore, (Hx+Hy) ⊆ ker(h). Hence, there is a ring homomorphism τ : Sxy → Sx⊗K Sy, such
that τ(rxy + (Hx +Hy)) = h(rxy).

The fourth claim follows from the homomorphism properties of σ and τ . To deal with the poset
isomorphism we again construct two functions that are inverses of each other. Next, we deal with
the poset properties.

Let ϕ : MSx × MSy → MSxy such that

ϕ((m1 +Hx,m2 +Hy)) = m1m2 + (Hx +Hy).

We need to show that ϕ send inputs into MSxy . So, suppose that mx +Hx ∈ MSx and my +Hy ∈
MSy . Assume to the contrary that mxmy + (Hx + Hy) = 0. Then τ(mxmy + (Hx + Hy)) =
(mx+Hx)⊗ (my+Hy) = 0. This implies mx+Hx = 0 or my+Hy = 0, a contradiction. Therefore,
ϕ is a function.

Similarly, define the relation ψ : MSxy → MSx × MSy such that

ψ(xp11 · · ·xpdxdx
yq11 · · · yqdydy

+ (Hx +Hy)) = (xp11 · · ·xpdxdx
+Hx, y

q1
1 · · · yqdydy

+Hy).

First, we show ψ sends inputs into MSx × MSy . So, let mx ∈ MRx and my ∈ MRy such that
mxmy + (Hx + Hy) ∈ MSxy . Then mxmy + (Hx + Hy) ̸= 0 and 0 ̸= τ(mxmy + (Hx + Hy)) =
(mx+Hx)⊗(my+Hy). However, now we must have mx+Hx ̸= 0 and my+Hy ̸= 0, since otherwise
(mx +Hx)⊗ (my +Hy) = 0. Thus, mx +Hx ∈ MSx and my +Hy ∈ MSy .

Next, we need to show that ψ is a function. So, let mx,m
′
x ∈ MRx and my,m

′
y ∈ MRy such

that mxmy + (Hx + Hy) = m′
xm

′
y + (Hx + Hy) ∈ MSxy . We show that the outputs under ψ are
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the same. Thus, we need to show that mx + Hx = m′
x + Hx and my + Hy = m′

y + Hy. Well,
mxmy + (Hx + Hy) −m′

xm
′
y + (Hx + Hy) = 0, since mxmy + (Hx + Hy) = m′

xm
′
y + (Hx + Hy).

Hence, using τ we get (mx +Hx)⊗ (my +Hy)− (m′
x +Hx)⊗ (m′

y +Hy) = 0.
Suppose that mx +Hx = m′

x +Hx or my +Hy = m′
y +Hy. Without loss of generality suppose

that mx +Hx = m′
x +Hx. Then

0 = (mx +Hx)⊗ (my +Hy)− (m′
x +Hx)⊗ (m′

y +Hy) = (mx +Hx)⊗ (my −m′
y +Hy).

Since mx +Hx ̸= 0 we must have my −m′
y +Hy = 0, whence my +Hy = m′

y +Hy.
We show thatmx+Hx ̸= m′

x+Hx andmy+Hy ̸= m′
y+Hy leads to a contradiction, so assume to

the contrary that this holds. Then {mx+Hx,m
′
x+Hx} must be linearly dependent, since otherwise

my + Hy = 0 by Lemma 2.7.1, a contradiction. So, mx + cm′
x + Hx = 0 for some c ∈ K \ {0},

which implies mx + cm′
x ∈ Hx. Furthermore, deg(mx) ̸= deg(m′

x), by linear independence of pairs
of monomials of the same degree in Sx. However, now Lemma 2.3.4 implies that mx ∈ Hx and
cm′

x ∈ Hx. This is a contradiction because it implies mx +Hx = 0. Therefore, ψ is a function.
It is easily seen that ϕ and ψ are inverse of each other, and hence bijections. In order to have a

poset isomorphism we just need to partial orders to be respected. This follows from Lemma 2.3.13.
The sixth claim is next. So, suppose that MSx is level linearly independent. Take distinct

monomials mx1my1 + (Hx +Hy), . . . ,mxnmyn + (Hx +Hy) ∈ MSxy and a1, . . . , an ∈ K such that

a1mx1my1 + (Hx +Hy) + · · ·+ anmxnmyn + (Hx +Hy) = 0.

By using τ we get

(mx1 +Hx)⊗ (anmy1 +Hy) + · · ·+ (mxn +Hx)⊗ (anmyn +Hy) = 0.

If mx1 +Hx, . . . ,mxn +Hx are linearly independent then Lemma 2.7.1 implies a1 = · · · = an = 0.
Assume for the purposes of a contradiction that mx1 +Hx, . . . ,mxn +Hx are linearly dependent.
Then there are b1, . . . , bn ∈ K, not all 0, such that for f = b1mx1 + · · ·+bnmxn we have f+Hx = 0.
Note that the homogeneous components of f are in Hx by Lemma 2.3.4. However, this contradicts
level linear independence of Sx. Therefore, Sxy is level linearly independent.

Finally, the existence of a monomial order follows easily from the poset isomorphism. In par-
ticular, MSxy is isomorphic to a product of two posets. If each of these posets has a total order
on them then we can induce the lexicographic order on MSxy . It is easily seen that if each of the
total orders is a monomial order that the lexicographic order on MSxy will be a monomial order as
well.

Note that the linear independence condition in Lemma 2.7.2 is a weaker version of level linear
independence. Lemma 2.7.2 also gives us the following very useful result.

Theorem 2.7.3 (The Cartesian and Tensor Correspondence). Suppose that for all i ∈ [d] we have
Si = Ri/Hi for some homogeneous ideal Hi of Ri = K[xi,1, . . . , xi,ni ], and that S1 is level linearly
independent. Let

S =
K[x1,1, . . . , x1,n1 , . . . , xd,1, . . . , xd,nd

]

(H1 +H2 + · · ·+Hd)
.

Then

1. S1 ⊗K · · · ⊗K Sd ∼= S.

2. MS1 × · · · × MSd
∼= ×MS.
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Figure 3.1.1: A hyperrectangle chaser order on M[2](3, 4).

3. MS is level linearly independent.

4. If there exist monomial orders for MS1 , . . . ,MSd
then there is a monomial order on MS.

Proof. All the claims follow from induction, Lemma 2.7.2, and associativity of tensor products.

We will have results that involve products of copies of a single poset or ring. For this reason
we make the following definition to distinguish between the operations.

Definition 2.7.4 (Cartesian and Tensor Powers). For a poset P and a ring S we define the n-th
Cartesian power of P and the n-th tensor power of S to be

P×,n = P × · · · × P,

S⊗,n = S ⊗ · · · ⊗ S.

3 Advanced Orders

In this section we define general classes of orders that are Macaulay orders for posets in later
sections.

3.1 The Hyperrectangle Chaser Orders

Informally, a hyperrectangle chaser order is a total order on a multiset lattices that prioritizes mak-
ing a hyperrectangle of the highest dimension possible. Every initial segment of a hyperrectangle
chaser order is a downset. A hyperrectangle chaser order can be seen in Figure 3.1.1.

The reader might find reviewing Definition 2.1.14 before reading Definition 3.1.1.

Definition 3.1.1 (The Hyperrectangle Chaser Orders). Let d ≥ 1, consider finite tosets T1, . . . ,Td

and put T = T1 × · · · × Td. For x = (x1, . . . , xd) ∈ T we define the single coordinate distance of
x from the origin to be

scd(x) = max
i∈[d]

Ti(xi).
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Next, define the initial compliment scd of x to be the element that replaces any entry of x whose
index is not equal to scd(x) with the first element of the corresponding toset,

ICscd(x) = (x′1, . . . , x
′
d),

where x′i = xi if Ti(xi) = scd(x), and x′i = T −1(1) if Ti(xi) ̸= scd(x). Finally we define a
hyperrectangle chaser order HCT . We do this inductively, such that for each S ⊆ [d] we define HCS

on TS , and of course HCT = HC[d]. If |S| = 1 then we define HCS to be the original total order on
TS = Ti, where i ∈ S ⊆ [d]. So, suppose that |S| > 1 and that HCS′ is defined for all S′ ⊆ [d] with
|S′| < |S|. Furthermore, pick π ∈ S|S| and consider the domination order D = Dπ. For x, y ∈ TS

we say that x <HCS
y if one of the following conditions holds:

1. scd(x) < scd(y)

2. scd(x) = scd(y) and ICscd(x) <D ICscd(y)

3. scd(x) = scd(y) > 2, ICscd(x) = ICscd(y) and x′ <HCS′ y
′, where S′ is the set of coordinate

for which the entries of x and y do not have index scd(x) = scd(y), and x′ and y′ are obtained
from x and y by deleting all entries equal to scd(x).

Remark 3.1.2. Notice that there are many hyperrectangle chaser orders for one multiset lattice.
A hyperrectangle chaser order depends on all the domination orders chosen for each subproduct.

Definition 3.1.3 (The Lexicographic Hyperrectangle Chaser Order). The lexicographic hyper-
rectangle chaser order is denoted by HCL, and is the hyperrectangle chaser order for which the
domination order chosen for every subproduct is always the lexicographic order.

Of course, when talking about the lexicographic hyperrectangle chaser order one needs to specify
the multiset lattice.

It is important to note that hyperrectangle chaser orders appear in different discrete extremal
problems, not just in the study of Macaulay posets. Bollobás and Leader used them while studying
edge isoperimetric problems in the grid [16]. Ahlswede and Bezrukov used them when they extended
the results of Bollobás and Leader to the arbitrary product of trees [1].

3.2 The Border Chaser Orders

Informally, a border chaser order is a total order on a multiset lattice that prioritizes getting to the
border, where the border of a multiset lattice of dimension d is all the points that have an upper
shadow of less than d points. Every initial segment of a border chaser order is a downset. A border
chaser order can be seen in Figure 3.2.1.

Notice that a hyperrectangle chaser order prioritizes staying away from the border. That is, a
border chaser order is the dual of a hyperrectangle chaser order. Let us be a little bit more precise.

Definition 3.2.1 (The Border Chaser Orders). First, we consider the finite multiset lattice M =
M[d](ℓ1, . . . , ℓd). Then M ∼= M ∗ by using the isomorphism of posets σ, that sends (x1, . . . , xd)
to (ℓ1 − x1, . . . , ℓd − xd). Furthermore, notice that we have an isomorphism of tosets (M ,D) ∼=
(M ∗,D∗) by σ, where D is a domination order on M .

Thus, for any hyperrectangle chaser order HCM , the isomorphism σ and HC∗
M induce a total

order on M , such that σ remains an isomorphism of tosets. We call this order the border chaser
order induced from HCM and denote it by BCM .
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Figure 3.2.1: A border chaser order on M[2](3, 4).

Remark 3.2.2. There are many border chaser orders on a multiset lattices, since there are many
hyperrectangle chaser orders. A border chaser order depends on the choices for domination orders
made for the corresponding hyperrectangle chaser order.

Definition 3.2.3 (The Lexicographic border Chaser Order). The lexicographic border chaser order
is denoted by BCL, and is the border chaser order induced from HCL.

3.3 Partitioned Tosets and Block Orders

Block orders are orders on multiset lattices, where we first partition the multiset lattice, then totally
order the elements in each partition, and finally we order the partitions. An example of a block
order can be seen in Figure 3.3.1.

Definition 3.3.1 (Ordered Partitions and Partitioned Tosets). Suppose that T is a finite toset
of size n. We say that a partition P of T is an ordered partition if there are integers 1 = a1 <
a2 · · · < ak−1 < ak = n such that

P = {T [ai, ai+1)
∣∣ i ∈ [k − 1]}.

We call T a partitioned toset with P . The set StartsP = {T −1[ai]
∣∣ i ∈ [k− 1]} is called the set of

starts of P .

Next, we extend the ideas in Definition 3.3.1 to Cartesian products.

Definition 3.3.2 (Products of Partitioned Tosets). Suppose that we have finite tosets T1, . . . ,Td

with corresponding ordered partitions P1, . . . , Pd. Then we can consider the products

T = Td × · · · × Td,

P = P1 × · · · × Pd,

StartsP = StartsP1 × · · · × StartsPd
.
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Figure 3.3.1: A block order on M[2](4, 4), where each of the tosets is partitioned into 2 parts.
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Figure 4.1.1: Hasse graphs of some basic star posets.

We call the elements of P the blocks of T and the elements of StartsP the starts of T . Clearly, P and
StartsP are in a bijective correspondence. For B ∈ P we define startP (B) to be the corresponding
element in StartsP under this bijective correspondence, and for s ∈ StartsP we define BlockP (s)
to be the corresponding element in P under this bijective correspondence. Notice that P is a
partition for T . Thus, for every x ∈ T we write BlockP (x) for the corresponding block that x
belongs to. Furthermore, we define the start of x to be the start of the block that x belongs to,
startP (x) = startP (BlockP (x)). We omit the subscript P when it is clear from context.

We know that T is a poset and we are going to make it into a toset now. First, we pick a total
order OStarts on Starts. Second, for each B ∈ P we pick a total order OB. Then we define the total
order O = (OB)B∈POStarts, such that for x, y ∈ T we have x ≤O y iff

1. start(x) ≤OStarts
start(y), or

2. start(x) = start(y) and x ≤OBlock(x)
y.

The order O is called a block order. It is clear that O and P make T into a partitioned toset.

4 Quotients by Monomial Ideals

Monomial ideals have gathered the most attention when it comes to Macaulay theorems. We start
by showing that the Mermin-Murai Theorem on colored square free rings follows from the Macaulay
theorem on star posets. After that we provide new results that were unknown to either algebraists
or combinatorialist.

4.1 Star Posets: A New Proof of the Mermin-Murai Theorem

Definition 4.1.1 (Star Posets). A basic star poset is a set of n + 1 elements with n ∈ N \ {0},
such that it forms a ranked poset that has two levels, where |Lvl0 | = n, |Lvl1 | = 1 and every
element in Lvl0 is less than the unique element in Lvl1. We write Star(n) for the basic star with
n + 1 elements. Then a star poset is the Cartesian product of basic star posets, and we denote it
by Star(n1, . . . , nd) = Star(n1)× · · · × Star(nd).

We will often say that the basic star poset Star(n) has n legs. Note that Star(1) = M[1](2).
Another way to think of Star(n) is to take n copies of M[1](2) and glue the largest elements together.
Some Hasse graphs of basic star posets are shown in Figure 4.1.1.

Theorem 4.1.2 (Star Macaulay Theorem). All star posets are Macaulay.

Bezrukov’s Dual Lemma gives us a corollary right away.

Corollary 4.1.3 (Star Dual Macaulay Theorem). The dual of any star poset is Macaulay.
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A proof of Theorem 4.1.2 can be found in [25]. Many authors contributed to the proof of the star
Macaulay Theorem over a long period of time. Lindström [44] proved the claim for Star(2, . . . , 2).
Leeb [43] handled the case Star(n, . . . , n) for any n ∈ N with n ≥ 2. Bezrukov handled the same
case as Leeb independently in [2]. Leeb in [43] mentioned that the result can be extended to all
stars, and Leck provided proof of this in [39].

Bollobás and Radcliffe studied face isoperimetric inequalities of M[d](2, . . . , 2) in [20]. These
results were later extended to face isoperimetric inequalities in finite multiset lattices by Bollobás
and Leader in [17]. Bezrukov in [3] noticed that these face isoperimetric inequalities are special
cases of the Macaulay poset problem on stars. Engel has a nice exposition of this in [25].

Frankl, Füredi and Kalai studied shadows of colored complexes in [26]. This result came to be
known as the colored Kruskal-Katona Theorem. A simpler proof of this result was given by London
in [45]. Engel in [25] noticed that colored complexes are isomorphic to the duals of star posets, and
generalized the Frankl-Füredi-Kalai Theorem by using Corollary 4.1.3.

It is clear that many authors found the star posets and their duals to be important. All of the
work mentioned so far was done before the 21st century. In more recent times, Mermin and Murai
in [47] introduced colored square free rings and studied Hilbert functions of homogeneous ideals
in them. In particular, they proved that colored square free rings are Macaulay. This result was
inspired by the Frankl-Füredi-Kalai Theorem. In fact, the Mermin-Murai Theorem generalizes the
Frankl-Füredi-Kalai Theorem. Murai used the Frankl-Füredi-Kalai Theorem to study Koszul toric
rings [50]. It turns out that we can easily prove the Mermin-Murai Theorem by applying Engel’s
generalization of the Frankl-Füredi-Kalai Theorem and The Macaulay Correspondence Theorem
2.6.3.

Definition 4.1.4 (Power and Disjoint Product Ideals). For R = K[x1, . . . , xd] and positive integers
n1, . . . , nd ∈ N ∪ {∞}, we define the power ideal of R and (n1, . . . , nd) to be ideal generated by
xn1
1 , . . . , x

nd
d ,

PowR(n1, . . . , nd) = (xn1
1 , . . . , x

nd
d ).

For an integer n ≥ 2 we define the disjoint variable product ideal of R and n to be

DVPR(n) =

({∏
i∈A

xi
∣∣ A ⊆ [d] and |A| = n

})
.

Alexandra Seceleanu pointed out to the author that DVPR(n) is called the n-th square free Veronese
ideal.

Definition 4.1.5 (Colored Square Free Rings). Let R = K[x1, . . . , xd] and define the homogeneous
ideal H = PowR(2, . . . , 2) + DVPR(2). So, H = (x1, . . . , xd)

2. We call S = R/H a basic colored
square free ring. A colored square free ring is a tensor product of basic colored square free rings.

Corollary 4.1.6 (Mermin-Murai [47] 2010). All colored square free rings are Macaulay.

Proof. Note that the poset of monomials of a basic colored square free ring is the dual of a basic
star (see Figure 4.1.2). The claim now follows from Theorem 2.7.3, Proposition 2.1.32, Corollary
4.1.3 and the Macaulay Correspondence Theorem 2.6.3.

It is important to mention that the definition for colored square free rings given above is different
than the one given by Mermin and Murai. However, Theorem 2.7.3 gives us that the definition
given by Mermin and Murai is equivalent to the one we give above.
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Figure 4.1.2: Relationship between star posets and colored square free rings.
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Figure 4.2.1: Hasse graphs of some spider posets.

The only thing left to do is describe a Macaulay order for the above posets. Of course, we just
need to do this once, as the dual order will correspond to the dual poset. The Macaulay order
below is defined using block orders. Macaulay orders on star posets and their duals have been
published before [10, 25, 47] using less general descriptions. The order we give below is equivalent
to the order given in [47], and in [47] the authors prove that the corresponding rings are Macaulay,
which gives us a Macaulay order. We use block orders, because as we shall see in later sections,
this a very fruitful way to generalize Macaulay theorems. In fact, all the orders discussed will be
block orders.

Suppose that we have colored square free rings S1, . . . , Sd, such that Si has ni variable and
n1 ≥ n2 ≥ · · · ≥ nd. We abuse notation and write MSi = {1 < xi,1 < · · · < xi,ni} to form a toset
out of each poset of monomials. Now we partition each of these tosets such that {1, xi,1} is the first
partition and then every other variable is in a partition with itself. The Macaulay block order on
the product S1 ⊗ · · · ⊗ Sd is formed by using the lexicographic boarder chaser order to order the
starts, and we use the lexicographic order to order each of the individual blocks. Note that if you
consider this order in the isomorphic ring given by Theorem 2.7.3 then this order will correspond
to a domination order. See [47] for an elementary definition of this domination order.

4.2 Spider Posets: Extending the Mermin-Murai Theorem

Spider posets are generalizations of stars, where we extend each of the legs by the same length.
Another way to think about spider posets is to take copies of M[1](ℓ) and glue the largest elements
together. The Hasse graphs of some spider posets are given in Figure 4.2.1, and a formal definition
of spider posets is given in Definition 4.2.1.

Definition 4.2.1 (Spider Posets). For integers k, ℓ ∈ N we define the spider poset Spider(k, ℓ) =
{0, 1, 2, . . . (k + 1)ℓ}, where the a ≤Spider(k,ℓ) b iff
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Figure 4.2.2: Relationship between star posets and colored square free rings.

1. a = b mod (k + 1) and a ≤N b, or

2. b = (k + 1)ℓ.

We call (k + 1)ℓ the head of Spider(k, ℓ). We say that Spider(k, ℓ) has k + 1 legs each of length
ℓ, where a leg consists of all numbers that are not the head and are in the same equivalence class
under k + 1 modular arithmetic.

Clearly Spider(k, 2) ∼= Star(k + 1). Thus, spider posets are a natural generalization of basic
star posets. Spider posets were first considered by Bezrukov in [4], and then later by Bezrukov and
Elsässer in [8]. In particular, the Cartesian power of a spider was considered in both cases. For
this reason we make the following definition.

Definition 4.2.2 (Bezrukov-Elsässer Posets). A Bezrukov-Elsässer poset is a poset of the form
(Spider(k, ℓ))×,n for some k, ℓ, n ∈ N.

Theorem 4.2.3 (Bezrukov-Elsässer [8] (2000)). All Bezrukov-Elsässer posets are Macaulay.

Of course, Bezrukov’s Dual Lemma 2.2.4 yields a corollary right away.

Corollary 4.2.4. All duals of Bezrukov-Elsässer posets are Macaulay.

The reader is probably anticipating at this point that we plan to use the same technique we
used for stars and the Bezrukov-Elsässer Theorem 4.2.3 to produce a result on rings. In honor of
the founders of Theorem 4.2.3 we make the following definition.

Definition 4.2.5 (Bezrukov-Elsässer Rings). Let R = K[x1, . . . , xd], choose positive integer ℓ ∈ N
and set H = PowR(ℓ, . . . , ℓ) + DVPR(2) = (xℓ1, . . . , x

ℓ
d) + (xixj

∣∣ i < j). We call R/H a basic
Bezrukov-Elsässer ring, and for n ∈ N we call (R/H)⊗,n a Bezrukov-Elsässer ring.

From here we get a generalization of the Mermin-Murai Theorem 4.1.6 to rings which are not
square free.

Theorem 4.2.6. All Bezrukov-Elsässer rings are Macaulay.

Proof. Note that the poset of monomials of a basic Bezrukov-Elsässer ring is the dual of a spider
(see Figure 4.2.2). The claim now follows from Theorem 2.7.3, Proposition 2.1.32, Corollary 4.2.4
and the Macaulay Correspondence Theorem 2.6.3.

The only thing left to do is to specify a Macaulay order on Bezrukov-Elsässer posets. If one
starts with the simpler definition of the Macaulay order on stars [10, 25, 47], then it takes more
effort to generalize to a Macaulay order on Bezrukov-Elsässer posets. However, with the block
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orders the generalization is natural, and just focuses on grouping the legs of the spiders just like
we did for basic stars. In [8] the authors prove that the order below is Macaulay, and the definition
in [8] is equivalent to the one we give below.

First, for every copy of Spider(k, ℓ) in the product Spider(k, l)×,n, we form a partitioned toset.
The first partition is made up of the leg that contains 0, Then the second partition is made up of
the leg that contains 1, and so on, until we get to the leg that contains k. The last partition is made
up of the leg that contains k together with the head of the spider. Inside each partition we order
the elements by the standard order on N, which is a restriction of the partial order on Spider(k, ℓ).
Note that this is the same type of partitioning we did on the duals of basic star posets, the legs
were just shorter.

The starts of Spider(k, l)×,n are ordered by the lexicographic border chaser order. Again, note
that this is the same thing we did for the duals of basic stars. There we just considered the dual
of the border chaser order, which is the hyperrectangle chaser order.

We have to be a little careful with the ordering in each block. The order is not the lexicographic
order, but a domination order. Consider a block of Spider(k, ℓ)×,n, say B = B1 × · · · × Bn. Then
each Bi is a partition of Spider(k, ℓ) that contains exactly one element from the set {0, 1, . . . , k}.
Define an to be the largest j ∈ [n] such that k ∈ Bj , and if there is no such j we will move on
to the largest i ∈ [n] such that k − 1 ∈ Bi. Similarly, define an−1 to be the largest j ∈ [n] \ {an}
such that k ∈ Bj , and again if there is no such j we will move on to the largest i ∈ [n] such that
k− 1 ∈ Bi. Continue like this for all Bi such that k ∈ Bi. Now, repeat this ordering for all Bi such
that k − 1 ∈ Bi and yet again if no such Bi exist then we move on to k − 2. Continue like this for
all the elements in [n]. At the end of this procedure we would have defined a1, . . . , an. Define the
permutation π ∈ Sn such that π(i) = ai. We order the block B by the domination order Dπ.

With every block being ordered by a domination order, and all the starts being ordered by the
lexicographic border chaser order, we finally have a total order on Spider(k, ℓ)×,n and this order is
Macaulay. One might be concerned that the domination order in the blocks of Bezrukov-Elsässer
posets seems very different than the lexicographic order in the case for stars. However, recall that
the legs of a basic star contain a single element, whence the general domination order used for the
Bezrukov-Elsässer posets is just the lexicographic order when the spiders are basic stars.

4.3 Products With Multiset Lattices

The oldest results on Macaulay posets and rings concern multiset lattices. It is natural to ask about
Macaulay theorems that contain multiset lattices. This has been studied by several authors. The
first such result we are aware of, is by Bezrukov and Leck.

Theorem 4.3.1 (Bezrukov-Leck [10] 2004). Suppose that P is a ranked poset with r(P) = 1 and
let q ∈ N with q ≥ 1. Then P × M[1](q) is Macaulay if and only if P is Macaulay.

Unfortunately, the above result does not give us a lot of information when it comes to rings.
The only monomial posets of rank 1 are just duals of stars. So, this gives us that the tensor product
of a basic colored square free ring with K[x]/(xq) is Macaulay.

The result above of Bezrukov and Leck was inspired by work done by Clements [22], which
characterized the Macualay property in terms of additivity, for the product of two posets where
one poset has rank 0. Bezrukov and Leck suggested that the next step to take is to characterize
all Macaulay posets that are the product of a Macaulay poset with M[1](ℓ) where ℓ ∈ N. It turns
out that such a result was first discovered by Mermin and Peeva, and independently by Shakin, in
terms of Macaulay rings.
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Theorem 4.3.2 (Mermin-Peeva [48] 2006, Shakin [55] 2007). Suppose that R = K[x1, . . . , xd] and
M is a monomial ideal of R. If (R/M,L) is Macaulay then (R[xd+1]/(M),L) is Macaulay.

Note that R[xd+1]/(M) ∼= K[x1, . . . , xd+1]/(M) ∼= R/M⊗KK[xd+1]/(0). Thus, if the monomial
poset of R/M is Macaulay with L, then the Cartesian product of the monomial poset of R/M with
M[1](∞) is Macaulay. This gives us an answer to the problem posed by Bezrukov and Leck.

Corollary 4.3.3. Suppose that P is a poset representable by a ring, where the quotient ideal is
monomial. If (P,L) is Macaulay then (P × M[1](∞),L) is Macaulay.

The result of Mermin and Peeva, and Shakin, does not have a rank restriction, but it only works
for a poset that is the poset of monomials of some quotient of a polynomial ring by a monomial
ideal. Furthermore, we must use the lexicographic order.

Chong [21] was studying generalizations of the Mermin-Murai Theorem 4.1.6 and discovered
more results like the two previous theorems. After translation, Chong’s results have a very natural
description in our framework.

Theorem 4.3.4 (Chong [21] 2015). The tensor product of a colored square free ring and a Clements-
Lindström ring, is Macaulay. In the language of posets, the product of a star and a multiset lattice
is Macaulay.

Theorem 4.3.5 (Chong [21] 2015). Suppose that S = K[x1, . . . , xd]/(x1, . . . , xd)
a+1 for some

integer 1 ≤ a ≤ ∞, and consider integers ℓd ≥ ℓd−1 ≥ · · · ≥ ℓ1 ≥ a + 1 and positive d′ ∈ N. Then
the tensor product of S with a Clements-Lindström ring whose poset of monomials is isomorphic
to M[d′](ℓ1, . . . , ℓd), is Macaulay.

Chong’s theorem also give results to the problem posed by Bezrukov and Leck. It should
be mentioned that Chong’s results in [21] are more general than what we have presented here. A
generalization of colored square free rings is defined, and Chong shows that among these generalized
colored square free rings, the only Macaulay rings with a certain domination order, are the ones in
Theorem 4.3.4and Theorem 4.3.5. Theorem 4.2.6 shows that the Mermin-Murai Theorem can be
generalized much further that the cases Chong considered.

4.4 Posets of Monomials Whose Hasse Graphs are Trees

There is a general patter to all the Macaulay rings presented in the previous sections. They all
involve taking the tensor product of a Macaulay ring with another Macaulay ring whose poset of
monomials is a tree. In fact, something much stronger is true. Most of the rings can be decomposed
into a tensor product of Macaulay rings whose posets of monomials are all trees. The exceptions
to this come from Section 4.3, where one of the posets is allowed to not be a tree, but again we
are still taking the product of a general poset with a tree. In this section, for a large class of rings
whose posets are trees, we settle the problem of when the tensor product is Macaulay.

Definition 4.4.1 (Tree Rings). We say that S = K[x1, . . . , xd]/H is a tree ring if the Hasse graph
of MS is a tree.

The following result shows that if S is a tree ring then the Hasse graph of MS is very close to
the dual of a spider poset.

Lemma 4.4.2. Suppose that S = K[x1, . . . , xd]/H is a tree. There exists a set A = {i1, . . . , in} ⊆
[d] such that:
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1. For all i ∈ A we have xi +H ̸= 0.

2. For all i ∈ [d] \A we have xi +H = 0.

3. For all i, j ∈ A with i ̸= j we have xi +H ̸= xj +H.

4. For all i, j ∈ A with i ̸= j we have that xixj +H = 0.

5. For all m ∈ MS there exists i ∈ A and p ∈ N such that m = xpi +H.

6. If i, j ∈ A such that i ̸= j and we take positive p, q ∈ N such that xpi +H,xqi +H ̸= 0, then
we have xpi +H ̸= xqj +H.

In particular, MS is isomorphic to the poset of monomials of

K[xi1 , . . . , xin ]

Pow(e1, . . . , en) + DVP(2)
=

K[xi1 , . . . , xin ]

(xe11 , . . . , x
ed
d ) + (xixj

∣∣ i < j)
,

for some e1, . . . , en ≥ 2. Note that this tells us that MS is isomorphic to a poset that is representable
by a ring that is a quotient by a monomial ideal. Therefore, Lemma 2.3.22 guarantees that there is
always a monomial order on MS.

Proof. First, we define a sequence of sets A1, A2, A3, · · · ⊆ [d] by induction. Let A1 = {i1}, where
i1 ∈ [d] is the smallest integer such that xi1 +H ̸= 0. Suppose that k ≥ 2 and that Ak′ is defined
for all 1 ≤ k′ < k. We define Ak now. Let Bk be the set of all integers i ∈ [d] such that:

1. xi +H ̸= 0, and

2. xi +H ̸= xj +H for all j ∈ A1 ∪ · · · ∪Ak−1.

If Bk ̸= ∅ then we define Ak = Ak−1 ∪ {ik} where ik is the smallest integer in Bk, and if Bk = ∅ we
define Ak = Ak−1.

Thus, for all k ∈ N \ {0} we have defined Ak and we have the sequence (Ak)
∞
1 . This sequence

is eventually constant because [d] is finite. We define A to be the infinitely repeating term of the
sequence (Ak)

∞
1 . Hence, we can write A = {i1, . . . , in} ⊆ [d]. The first three claims follow from the

inductive definition of A.
The fourth claim is now forced because S is a tree ring, otherwise we have a contradiction with

the cycle {1 +H,xi1 +H,xi1xi2 +H,xi2 +H}. The fifth claim now follows immediately from the
fourth claim. The sixth claim is also forced because S is a tree ring, otherwise we have two different
paths between the vertices 1 +H and xpi +H = xqj +H.

Bezrukov in [4] studied powers of Macaulay posets whose Hasse graphs are trees. He found that
the Macaulay property among upper semi lattices forces the posets to be spiders.

Definition 4.4.3 (Upper Semilattice). Suppose that we have a poset P. For a, b, s ∈ P we say
that s is a supremum of a and b if a, b ≤ s, and if for all c ∈ P with a ≤ c and b ≤ c we have s ≤ c.
We say that P is an upper semilattice if for any a, b ∈ P a supremum exists and is unique.

Theorem 4.4.4 (Bezrukov [4] 1998). Suppose that P is a finite ranked upper semilattice and
n ≥ r(P) + 3. If P×,n is Macaulay then P is isomorphic to a spider poset.

Combining everything we have developed so far, we get the following classification result.
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Theorem 4.4.5 (Tree Ring Classification). Suppose that S is a level linearly independent tree ring
such that MS is finite and let n ≥ r(MS) + 3. Then S⊗,n is Macaulay iff MS is isomorphic to the
poset of monomials of a basic Bezrukov-Elsässer ring.

Proof. By Theorem 2.7.3 we have that S⊗,n is level linearly independent. Notice that Lemma 4.4.2
gives us that there is always a monomial order on MS , whence by Theorem 2.7.3 we always have a
monomial order on MS⊗,n . Also, by using Theorem 2.7.3 again we have that MS⊗,n = M×,n

S , and

by Proposition 2.1.32 we have (M×,n
S )∗ = (M ∗

S )
×,n. Therefore, M ∗

S⊗,n = (M×,n
S )∗ = (M ∗

S )
×,n.

We deal with the forward direction first, so suppose S⊗,n is Macaulay. Thus, by the Macaulay
Correspondence Theorem 2.6.3 we have that MS⊗,n is Macaulay. Hence, Bezrukov’s Dual Lemma
2.2.4 gives us that M ∗

S⊗,n is Macaulay, Furthermore, by Lemma 4.4.2 we have that M ∗
S is an upper

semilattice. So, M ∗
S is isomorphic to a spider poset by Theorem 4.4.4. Therefore, MS is isomorphic

to the poset of monomials of a basic Bezrukov-Elsässer ring.
The backwards direction follows from Corollary 4.2.4 and the Macaulay Correspondence The-

orem 2.6.3.

4.5 Macaulay Rings that are not Tree Rings

Chong’s theorems 4.3.4 and 4.3.5 arose from the study tensor products that involve quotients of
polynomial rings by an ideal generated from some level. Chong called these structures colored rings
as they were a generalization of the square free rings that Mermin and Murai studied. This idea
has been studied in combinatorics as well.

Definition 4.5.1 (Leck Rings). A basic Leck ring has the form

K[x1, . . . , xd]

Pow(2, . . . , 2) + (x1x2 · · ·xd)
.

A Leck ring is the tensor product of basic Leck rings together with one Kruskal-Katona Ring.

Notice that when d = 2, the poset of monomials of a basic Leck ring is just the dual of a star.
Thus, the following theorems provide another direction in generalizing the Mermin-Murai Theorem
4.1.6.

Theorem 4.5.2 (Leck [40, 41] 2001,2002). The poset of monomials of a Leck ring is Macaulay.

This time we don’t need to deal with dual posets. Everything is setup the right way and we
get a Corollary from the Macaulay Correspondence Theorem 2.6.3.

Corollary 4.5.3. Every Leck ring is Macaulay.

Leck’s results are very interesting for two reasons. The first one is that the product does not
involve any trees in many cases. The second one is that the Macaulay order is not a domination
order and not a block order.

5 Quotients by Binomial Ideals

The research around Macaulay rings has been very focused on rings that are quotients by a mono-
mial ideal. Toric ideals have also been considered [28, 29, 50]. As far as the authors are aware, there
are no published results that show that quotients by ideals that are not monomial and not toric can
be Macaulay. By using all the results in Section 2 and some solutions to discrete extremal problems,
we give two families of Macaulay rings that fall outside these previously studied categories.
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Figure 5.1.1: Hasse graphs of some basic Karakhanyan-Riordan rings.

5.1 The Discrete Even Torus

Definition 5.1.1. (Karakhanyan-Riordan Rings) A basic Karakhanyan-Riordan ring has the from

K[x1, x2]

H
=

K[x1, x2]

Pow(p, p) + DVP(2) + (xp−1
1 − xp−1

2 )
=

K[x1, x2]

(xp1, x
p
2, x1x2, x

p−1
1 − xp−1

2 )
.

We will denote the poset of monomials of a basic Karakhanyan-Riordan ring by T (p). From here,
a Karakhanyan-Riordan ring is a tensor product of basic Karakhanyan-Riordan rings. The poset
of monomials of a Karakhanyan-Riordan ring will be denoted by T (k1, . . . , kn).

Karakhanyan-Riordan rings are similar to some Bezrukov-Elsässer rings. In particular, the
Hasse graph of a Karakhanyan-Riordan ring can be obtained from the Hasse graph of Bezrukov-
Elsässer ring by gluing the top elements. Some examples of Hasse graphs of basic Karakhanyan-
Riordan rings can be seen in Figure 5.1.1.

Hasse graphs of basic Karakhanyan-Riordan rings are even cycles. These graphs have received
a lot of attention in the area of vertex isoperimetric problems. In many cases, the solution to a
vertex isoperimetric problem implies the solution to a Macaulay problem. Informally, the vertex
isoperimetric problem is concerned with finding sets of vertices in simple graphs with minimum
boundary. We refer the reader to [31] for an introduction to vertex isoperimetric problems.

The vertex isoperimetric problem on T (k1, . . . , kn) was first posed by Wang and Wang in [57].
The problem was completely settled by Karakhanyan in [35]. Later, the case T (k, . . . , k) was
independently settled by Bollobás and Leader in [15]. Building on the work of Bollobás and Leader,
Riordan in [52] independently discovered the general case that Karakhanyan figured out. It known
in the literature that many vertex isoperimetric problems imply the Macaulay poset property, and
the following result was observed by Bezrukov and Leck in [10].

Theorem 5.1.2 (Karakhanyan-Riordan Macaulay Theorem). T (k1, . . . , kn) is Macaulay.

Of course, we want to get a result on Macaulay rings from the above result. We need to be a
little bit more delicate now, since the ideal involved in the quotient is not monomial.
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A

Figure 5.2.1: Hasse graph of the basic Bezrukov-Piotrowski-Pfaff ring.

Corollary 5.1.3. All Karakhanyan-Riordan rings are Macaulay.

Proof. First, it is easy to see that the poset of monomials of a basic Karakhanyan-Riordan ring
is level linearly independent, since the only concern is with the relation xp−1

1 − xp−1
2 and this re-

lation occurs on a level that has one element. Second there is a monomial order on every basic
Karakhanyan-Riordan ring. We order every monomial that is not on the top level by the lexico-
graphic order and we set the element on the top level to be the last element in our new monomial
order. Thus, Theorem 2.7.3 implies that every Karakhanyan-Riordan ring is level linearly indepen-
dent and there exists a monomial order on it. So, the conditions for the Macaulay Correspondence
Theorem 2.6.3 are satisfied, whence Theorem 5.1.2 implies that every Karakhanyan-Riordan ring
is Macaulay.

We just need to describe a Macaulay order on T (k1, . . . , kn). The Macaulay order we present here
is given by Bezrukov and Leck in [11], and we reformulate it in terms of block orders. Bezrukov and
Leck gave a simpler proofs of the Karakhanyan-Riordan Theorem by using a vertex isoperimetric
inequality on finite grids by Bollobás and Leader [19]. Assume that 2 ≤ k1 ≤ · · · ≤ kn. We are
going to form a block order made up of domination orders. Consider the ordered partitions

T (ki) = {1 +H < x1 +H < · · · < xki−1
1 +H} ∪ {x2 +H < x22 +H < · · · < xki1 +H = xki2 +H}.

The starts of T (k1, . . . , kn) are ordered by the colexicographic order, and each block is ordered by
the lexicographic order. The dual of this block order is a Macaulay order on T (k1, . . . , kn).

5.2 The Diamond Poset

Definition 5.2.1 (Bezrukov-Piotrowski-Pfaff Rings). The basic Bezrukov-Piotrowski-Pfaff ring is

K[x1, x2, x3]

Pow(3, 3, 3) + DVP(2) + (x1 − x2, x2 − x3)
=

K[x1, x2, x3]

(x31, x
3
2, x

3
3, x1x2, x1x3, x2x3, x

2
1 − x22, x

2
2 − x23)

.

A Bezrukov-Piotrowski-Pfaff ring is a tensor power of the above basic ring.

The Hasse graph of the basic Bezrukov-Piotrowski-Pfaff is called the diamond poset, and can
be seen in Figure 5.2.1.

Theorem 5.2.2 (Bezrukov-Piotrowski-Pfaff [12] 2004). All powers of the Diamond poset are
Macaulay.
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The following corollary follows right away and its proof is identical to the proof of Corollary
5.1.3. Note that we again need to worry about level linear independence and the existence of a
monomial order, but it is easy to see that both of these requirements are satisfied.

Corollary 5.2.3. All Bezrukov-Piotrowski-Pfaff rings are Macaulay.

The Macaulay order is again given by a block order. This order can by found in [12] in an
equivalent form. Form the ordered partition

{1 +H < x1 +H} ∪ {x2 +H} ∪ {x3 +H < x21 +H = x22 +H = x23 +H}.

We order the starts by the lexicographic order and each block by using the colexicographic order.
The resulting block order is a Macaulay order on the Cartesian powers of the diamond poset.

6 Open Problems

We state several open problems in this section. Of course, we have the main topics of this paper.

Problem 6.1. Find classes of Macaulay posets.

Problem 6.2. Find classes of Macaulay rings.

However, let us give more detailed problems. One of the things that makes the Macaulay
Correspondence Theorem 2.6.3 work is the existence of a monomial orders.

Problem 6.3. Find classes of rings for which monomial orders exist.

The other things that is very important for the Macaulay Correspondence Theorem 2.6.3 is
level linear independence.

Problem 6.4. Find classes of level linearly independent rings.

The Macaulay problem on star posets and square free rings is completely settled, but there is
still work to be done when it comes to tree rings. The classification in Theorem 4.4.5 does not
handle the cases for small powers of tree rings. It is an easy exercise to check that the following
power of a tree ring is Macaulay (

K[x1, x2]

(x21, x
3
2, x1x2)

)⊗,2

.

Of course, Theorem 4.4.5 does not handle the case when we can have different tree rings in the
product. Bezrukov and Leck in [10] conjecture that one can have spiders with the same leg length,
but different number of legs, and the product will still be Macaulay. The same conjecture is stated
by Harper in [31]. Chong’s Theorem 4.3.4 shows that infinite trees can appear in the product.

Problem 6.5. Completely classify the posets of monomials for all Macaulay rings that are tensor
products of tree rings. If possible, do this with a unified approach by using block orders that
involve the hyperrectangle chaser order on the starts and domination orders on the blocks. Give a
general Macaulay theorem that encompasses as special cases the original Macaulay Theorem 2.2.6,
the Clements-Lindström Theorem 2.2.8, the star Macaulay Theorem 4.1.2 and the Mermin-Murai
Theorem 4.1.6, the Bezrukov-Elsässer Theorem 4.2.3, Chong’s Theorem 4.3.4, and the Tree Ring
Classification Theorem 4.4.5.
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The Mermin-Peeva and Shakin Theorem 4.3.2 gives a nice answer to the problem of Bezrukov
and Leck. But Bezrukov and Leck wanted a more general statement that involves a chain of any
length. This suggests a very natural generalization of the Mermin-Peeva and Shakin Theorem, note
that the case n = ∞ in Conjecture 6.6 is Theorem 4.3.2.

Conjecture 6.6. If S is a Macaulay ring then S ⊗K[x]/(xn) is Macaulay.

Here is a slightly weaker version.

Conjecture 6.7. Suppose that S is a quotient by a monomial ideal. If S is Macaulay with a
domination order then S ⊗K[x]/(xn) is Macaulay.

In Section 5 the quotients by binomial ideals that we considered have something in common.
The posets of monomials are obtained by taking chains of the same length and joining the bottom
and top elements. Here is a problem in this direction.

Problem 6.8. Let R = K[x1, . . . , xd] and put

H = Pow(n, . . . , n) + DVP(2) + (xn−1
1 − xn−1

2 , xn−1
2 − xn−1

3 , . . . , xn−1
d−1 − xn−1

d ).

Find all cases when R/H is Macaulay.

In Section 4.5 we discussed Leck’s results which show that we can have a tensor product that
is Macaulay, but none of the individual rings in the product are tree rings. The products in Leck’s
results concern posets of that form M[d](2, . . . , 2), but with the top element removed. In the case
d = 2, this is just the dual of a basic star poset. Chong’s results in Section 4.3 are obtained from
a similar point of view. Chong considered, after translating from rings to posets, products that
are made up of M[d](∞, . . . ,∞) but we also remove everything above a certain level. This leads to
asking about a natural generalization.

Problem 6.9. Find all Macaulay rings that are tensor products of rings of the form

K[x1, . . . , xd]

Pow(ℓ1, . . . , ℓd) + (Lvli)
,

for some ℓ1, . . . , ℓd ∈ N ∪ {∞} and i ∈ N.

Of course, Leck’s results concern the case ℓ1 = · · · = ℓd = 2, and Chong’s results concern the
case ℓ1 = · · · = ℓd = ∞. Solving Problem 6.9 might lead to finding new types of orders, as Leck’s
results do not involve a domination order or a block order. Both Leck and Chong discovered results
that say that there must be very strict restrictions on i for the Macaulay property to hold. We
refer the reader to [21, 40, 41, 42].
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