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Abstract

Ahlswede and Cai proved that if a simple graph has nested solutions (NS) under the edge-
isoperimetric problems, and the lexicographic (lex) order produces NS for its second cartesian
power, then the lex order produces NS for any finite cartesian power. Under very general
assumptions, we prove that if a graph and its second cartesian power have NS, then so does any
finite cartesian power. Harper asked if this is true without any restriction. We also conjecture
that it is. All graphs studied in the literature for which the lex order is optimal are regular. This
lead Bezrukov and Elsässer to conjecture that if the lex order is optimal for the second cartesian
power, then the original graph is regular. A counterexample to this conjecture is provided.

1 Introduction

Discrete isoperimetric inequalities have been studied for applications to pure mathematics and the
sciences, and for their own sake. Harper solved the edge-isoperimetric problem on hypercubes [16]
in order to partially prove Posner’s wirelength conjecture. Lindsay [23] solved the problem on
Hamming graphs and completely settled Posner’s conjecture. Harper’s result has been rediscovered
multiple times [3, 14, 18, 20] In more recent times, the solutions to the edge-isoperimetric problem
on the Petersen graph was motivated by applications to multiprocessing computers. The literature
on applications is vast, we point the reader to [4, 17] for more details.

It is known [15, 17] that the Kruskal-Katona Theorem [19, 21] implies Harper’s Theorem. To be
more precise, the Kruskal-Katona Theorem implies solutions to a corresponding maximum weight
downset problem. The Maximum weight downset problem provides solutions to a corresponding
edge-isoperimetric problem. This connection holds in general for Macaulay posets and correspond-
ing graphs [5]. In [10] this connection was used to study Macaulay posets.

In this paper, we consider two graphs G = (VG, EG) and H = (VH , EH). All graphs are simple.
Indices will be omitted when the graphs are clear from context. For A,B ⊆ VG we define:

IG(A,B) = {{u, v} ∈ EG

∣∣ u ∈ A, v ∈ B},
IG(A) = IG(A,A),

IG(m) = max
A⊆VG, |A|=m

|IG(A)|,

ΘG(A) = {{u, v} ∈ EG

∣∣ u ∈ A, v ̸∈ A},
ΘG(m) = min

A⊆VG, |A|=m
|ΘG(A)|.

There are two classical edge-isoperimetric problems.
The Boundary Problem: for m ∈ [|VG|], find A ⊆ VG with |A| = m and |Θ(A)| = Θ(m).
The Induced Edges Problem: for m ∈ [|VG|], find A ⊆ VG with |A| = m and |I(A)| = I(m).
We call such sets A optimal. For regular graphs these two problems are equivalent, which follows

by the folklore result below (a proof can be found in [17]).
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Lemma 1.1. If G = (V,E) is a regular graph with degree n and A ⊆ V then

|Θ(A)|+ 2|I(A)| = n|A|.

The Cartesian product of H and G is the graph H□G, with the vertex set VH ×VG, whose two
vertices (x, y) and (u, v) are adjacent iff either x = u and {y, v} ∈ EG, or {x, u} ∈ EH and y = v.
The graph Gd = G□G□ · · ·□G (d times) is called the dth Cartesian power of G.

We say that G has nested solutions (NS) if there are sets A1 ⊆ A2 ⊆ · · · ⊆ A|V |, such that for
all i ∈ {1, . . . , |V |} we have that |Ai| = i and Ai is optimal in the induced edges problem. Notice
that the NS property forces a total order on V . Thus, if a graph has NS, then without loss of
generality we assume V = {0, 1, . . . , |V | − 1}, where each {0, 1, . . . , k − 1} is optimal for k ≤ |V |.
We call {0, 1, . . . , k − 1} an initial segment of size k in G. Total orders on V that emerge from NS
are called optimal orders.

Lexicographic order, L on n-tuples with integer entries, is defined such that (x1, . . . , xn) <L
(y1, . . . , yn) iff there exists an index i, 1 ≤ i ≤ n, such that xj = yj for j < i and xi < yi.

Colexicographic order, C on n-tuples with integer entries, is defined such that (x1, . . . , xn) <C
(y1, . . . , yn) iff there exists an index i, 1 ≤ i ≤ n, such that xj = yj for j > i and xi < yi.

These orders are important to mathematics. They are involved in the solutions of many discrete
extremal problems. They are also important to other areas of mathematics and studying them is
of great importance.

Macaulay’s lex ideal theorem [24] uses the lexicographic order to give lower bounds on Hilbert
functions in polynomial rings. This theorem eventually led to the discovery of Gröbner basis and
the rise of computational commutative algebra. Many generalization have been given in different
rings [25, 26, 27, 28]. Recently, the theory of Hilbert functions was linked with the theory of
Macaulay posets [22] . It would be interesting to see results on Hilbert functions deduced from
edge-isoperimetric inequalities in the future, since edge-isoperimetric inequalities were already used
to study Macaulay posets in [10].

Theorem 1.2 (Ahlswede-Cai [2], 1997). If G has NS and L is optimal for G2 then L is optimal
for Gn for any n ≥ 3.

In [2], Theorem 1.2 was stated using generalized edge-isoperimetric functions, but it has been
mostly used for graphs. Notice that Theorems 1.2 holds if L is replaced with C. Ahlswede and
Cai called Theorem 1.2 a local-global principle. The local-global principle was first generalized
by Harper [17] to allow different graphs in the product. Recently, in [9] it was shown that the
local-global principle holds for many different orders. The idea of handling the 2-dimensional case,
and then handling the d-dimensional case by using compression, is used to attack many discrete
extremal problems and problems concerning Hilbert functions is algebra.

For 1 ≤ m ≤ |V | we define the m-th δ-entry of G by δG(m) = IG(m)−IG(m−1), and we define
the δ-sequence of G to be δG = (δG(1), δG(2), . . . , δG(|V |)). Some examples of δ-sequences are:

δKn = (0, 1, 2, . . . , n− 1)

δtree on n vertices = (0, 1, 1, 1, . . . , 1)

δPetersen = (0, 1, 1, 1, 2, 1, 2, 2, 2, 3).

Lemma 1.3 (Bezrukov [5] ,1999). If G has NS then δ(i+1)− δ(i) ≤ 1 for all i ∈ {1, . . . , |V | − 1}.

This result tells us that δG can be partitioned into (strictly) increasing monotonic segments.
From our previous examples, δKn has one monotonic segment, δPetersen has 6 monotonic segments
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and δtree on n vertices has n − 1 monotonic segments. By MG,i with i ≥ 1 denote the set of vertices
corresponding to the entries of the i-th monotonic segment of δG.

sG,i = δG

(
1 +

i−1∑
k=1

|MG,k|

)
,

Informally, si is starting value of the i-th monotonic segment. Observe that δ(1) = s1 = 0. We say
that G is δ-dense iff sG,2, . . . , sG,r > 1. Note that Kn is δ-dense, but the Petersen graph and any
tree on at least three vertices are not. Our main result is the following theorem.

Theorem 1.4. Suppose that G is δ-dense. If G and G2 have NS then so does Gd for all d ≥ 3.

Many results in the literature that solve the problem for G2 (when it is not trivial) assume that
G is regular[2, 6, 7, 8, 13]. This led to the following conjecture.

Conjecture 1.5. (Bezrukov-Elsässer [8], 2003) If L is optimal for G2 then G is regular.

In Section 2 we prove Theorem 1.4. In Section 3 we provide a counterexample to Conjecture
1.5, and give some ideas on how to drop the δ-dense condition in Theorem 1.4.

2 Uniqueness of L and C in G2

Suppose that G and H admit optimal orders. For A ⊆ VH × VG denote Ai(a) = {(x1, x2) ∈ A
∣∣

xi = a}. We say that A is compressed if Ai(a) = {0, 1, ..., |Ai(a)| − 1} for i = 1, 2 and any a. A
proof of the following folklore result can be found in [17].

Lemma 2.1. If A1 ⊆ · · · ⊆ An ⊆ VH□G, then there exist compressed sets A′
1 ⊆ · · · ⊆ A′

n such that
|Ai| = |A′

i| and |IH□G(Ai)| ≤ |IH□G(A
′
i)|, for all i ∈ [n].

Thus, if H□G has NS, then H□G has NS A1 ⊆ · · · ⊆ A|V | such that each Ai is compressed.
These NS give an order on H□G such that each initial segment is a compressed set. We will call
such orders compressed optimal orders. Note that L and C are compressed optimal orders. A very
useful insight for the proof of Theorem 2.3 is the following result.

Lemma 2.2 (Bezrukov [5] ,1999). If A ⊆ VH□G is compressed then

|I(A)| =
∑

(x,y)∈A

(δH(x) + δG(y)).

Theorem 2.3. Suppose that G and G2 have NS, and let O be a compressed optimal order on G2.
If G is δ-dense then O = L or O = C.

Proof. Take a chain of compressed optimal sets A1 ⊆ A2 ⊆ · · · ⊆ A|VH ||VG|, such that |Ai| = i. We
always have A1 = {(0, 0)}, since A1 is compressed. The claim is trivial for |VG| = 1, so suppose
that |VG| > 1. Also, because A2 is compressed we have A2 = {(0, 0), (0, 1)} or A2 = {(0, 0), (1, 0)}.
If A2 = {(0, 0), (0, 1)} then Lemma 2.5 and Lemma 2.6 give us O = L. If A2 = {(0, 0), (1, 0)} then
symmetry and the same argument gives us O = C. We will now prove these lemmas. The following
inequality is useful for proving Lemma 2.5 and Lemma 2.6.

Lemma 2.4. If k ∈ {3, . . . , |VG|} then δ(k)− δ(2) > 0.
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Proof. Since G is δ-dense we have δG(k)− δG(2) ≥ minn≥2 sG,n − δG(2) ≥ 2− 1 > 0.

Lemma 2.5. If A2 = {(0, 0), (0, 1)} then A|VG| = {(0, 0), (0, 1), . . . , (0, |VG| − 1)}.

Proof. Assume to the contrary that this is not the case. Then there is some k ≥ 3 such that
Ak ̸= {(0, 0), . . . , (0, k − 1)}, and for all k′ < k we have Ak′ = {(0, 0), . . . , (0, k′ − 1)}. Thus,
Ak = {(0, 0), . . . , (0, k − 2), (1, 0)}, since Ak is compressed and Ak−1 = {(0, 0), . . . , (0, k − 2)}.
However now we have a contradiction with the optimality of Ak,

|I({(0, 0), (0, 1), . . . , (0, k − 1)})| − |I(Ak)| = δG(k)− δG(2) > 0,

Lemma 2.6. If A|VG| = {(0, 0), (0, 1), . . . , (0, |VG| − 1)} then O = L.

Proof. Assume for the purposes of a contradiction that the claim does not hold. Let k be minimal
such that Ak is not an initial segment of the lex order. Also, let (x, y) be the unique vertex in
Ak−1 \ Ak−2, and (w, z) be the unique vertex in Ak \ Ak−1. We must have y < |VG| − 1, since
otherwise Ak−1 is an initial segment of lex and Ak is compressed. This forces (w, z) = (x+ 1, 0).

Case 1: If y > 0 then we get a contradiction with the optimality of Ak,

|I(Ak−1 ∪ {(x, y + 1)})| − |I(Ak)| = δ(x+ 1) + δ(y + 2)− δ(x+ 2)− δ(1),

= δ(x+ 1) + δ(y + 2)− δ(x+ 2),

≥ δ(x+ 1) + δ(y + 2)− δ(x+ 1)− 1,

= δ(y + 2)− δ(2),

> 0.

Case 2: Suppose y = 0. So, there exist t ≥ 1 such that for s = k + t we have

As = Ak−1 ∪ {(x+ 1, 0), (x+ 2, 0), . . . , (x+ t, 0)} ∪ {(x, 1)}.

Let

C = {(x, 0), (x, 1), . . . , (x, t)},
R = {(x, 0), (x+ 1, 0), . . . , (x+ t, 0)},
B = Ak−2 ∪ C ∪ {(x, t+ 1)}.

One has,

|I(B \ {(x, t+ 1)})| − |I(As \ {(x, 1)})| = |I(C)| − |I(R)|+ |I(Ak−2, C)| − |I(Ak−2, R)|,
≥ |I(Ak−2, C)| − |I(Ak−2, R)|,

= (t+ 1)|I(Ak−2, {(x, 0)})| −
t∑

j=0

|I(Ak−2, {(x+ j, 0)})|

≥ (t+ 1)|I(Ak−2, {(x, 0)})| −
t∑

j=0

|I(Ak−2, {(x, 0)})|

= 0.

Thus, we a contradiction with the optimality of As, since from the above inequality we have

|I(B)| − |I(As)| = δ(x+ 1) + δ(t+ 2)− δ(x+ 1)− δ(2) ≥ δ(t+ 2)− δ(2) > 0,

Therefore, the claim holds, since in both cases we get a contradiction.
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As mentioned at that start of the proof we are done after the proof of lemmas 2.5 and 2.6.

We can now prove Theorem 1.4.

Corollary 2.7. Suppose that G is δ-dense. If G and G2 have NS then so does Gd for all d ≥ 3.

Proof. There exists a compressed optimal order on G2, since G2 has NS. Hence, Theorem 2.3 forces
this order to be L or C. Therefore, we are done by Theorem 1.2.

3 Towards a Complete Local-Global Principle

We will first provide a counterexample to Conjecture 1.5. Let

X = ({x0, x1, x2, x3, x4}, {{x0, x1}, {x1, x2}, {x3, x4}}), two disjoint paths of sizes 3 and 2,

Y = ({y0, y1, y2, y3, y4, y5}, {{y0, y1}, {y0, y2}, {y1, y2}, {y3, y4}, {y3, y5}, {y4, y5}}),
two disjoint cliques of size 3.

Then for all n ∈ N define Zn = X ∗ Y1 ∗ · · · ∗ Yn−1, It is easy to check that

δZ2 = (0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 7, 8, 9, 10, 11, 12, 13).

It is also easy to check that L is optimal for Z2
2 . We say that δG is symmetric iff δ(i) + δ(|V | −

i+1) = δ(|V |) for all i ∈ {1, . . . , |V |}. Notice that Z2 is not regular because of the following result.

Theorem 3.1. (Bonnet, Sykora [12]) δG is symmetric iff G is regular.

Conjecture 3.2. For all n ≥ 1 we have that Zd
n has NS.

Proving Conjecture 3.2 for d = 1 should follow from a similar argument to the one used in
the proof of Theorem 5 in [6]. The case d ≥ 3 will follows from Theorem 1.2 if the case d = 2
is handled. Note that Theorem 2.3 implies that L and C are the only compressed optimal orders.
The case d = 2 is interesting because Zn is not regular.

All results point to Conjecture 3.3. Note that in [9], Theorem 1.2 was generalized to include
the Petersen graph and many other cases. The case for the product of tree was not handled in [9],
but the authors conjecture that it can be included and suggest a way to prove this.

Conjecture 3.3 (Harper [17], 2004). If G and G2 have NS then so does Gd for all d ≥ 3.

To solve Conjecture 3.3 we suggest the following steps:

1. Find all optimal orders when δ(i) ≥ 1. See [9] for block domination orders and [1, 11] for the
the order on the product of trees. We suspect that slight modifications of these orders will
produce all possible compressed optimal orders.

2. Prove a local-global principle for the orders in step 1. We suspect that pull-push method
developed in [9] can be used to solve this problem as well.

3. Find all optimal orders when δ(i) ≥ 0. We believe that a generalization of the orders in step
1 using block orders from [9] will work and maybe some slight modification will be needed.

4. Prove a local-global principle for all orders in step 3. Again, we suspect that the pull-push
method from [9] can be used here again.
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